Blood Biomarkers of Stroke Recovery

Matt Edwardson, MD
Assistant Professor
Department of Neurology and Rehabilitation Medicine
Georgetown University
Center for Brain Plasticity and Recovery
MedStar National Rehabilitation Hospital
11/2/2018
Assessing Neural Systems Biology from Plasma

- DNA
 - Epigenetic regulation through methylation, etc.

- RNA
 - Messenger RNA
 - MicroRNA

- Proteins
 - Exosome

- Metabolites
 - Lipids, amino acids
 - metabolites, proteins, microRNA

Blood-Brain Barrier

White Blood Cells

Epigenetic changes to DNA, messenger RNA

*Shah, Patel, and Freedman, NEJM 2018
Blood Biomarkers of Neurologic Disease

Preclinical Alzheimer’s Disease
- Followed 525 adults > 70 for 5 yrs
- 28 converted to dementia/MCI
- Compared converter to healthy non-converters
- 10 metabolite panel had 90% accuracy discriminating groups
- Not related to ApoE4 status

Multiple Sclerosis
- 101 relapsing-remitting MS patients, 51 matched controls
- Split into discovery and validation cohorts
- 4 microRNAs discriminated:
 - MS vs. control
 - Relapse vs. stable disease
 - Gadolinium enhancement on MRI vs. no enhancement

Mapstone et al, Nature Medicine 2014
Selmaj et al, Annals of Neurology 2017
Prior Blood Biomarker Studies in Stroke Recovery

Proteomics

• Low serum BDNF levels associated with worse recovery
 – >500 stroke patients
 – Pts with lowest tertile BDNF vs. top 2 tertiles
 – mRS 0-2 = poor recovery

<table>
<thead>
<tr>
<th>Odds Ratio for association of BDNF level with functional outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 year</td>
</tr>
<tr>
<td>2 year</td>
</tr>
<tr>
<td>7 year</td>
</tr>
<tr>
<td>7 year</td>
</tr>
</tbody>
</table>

• Very few blood biomarker of stroke recovery studies in humans!

Stanne et al, Stroke 2016
Plasma microRNA markers of upper limb recovery

- Samples from 27 CPASS participants
- Collected 19 days post-stroke
- Recovery based on delta ARAT, baseline – 6 mo.
- Good recovery > 6 pt change on delta ARAT
So Where’s the Controversy??

<table>
<thead>
<tr>
<th></th>
<th>5 days</th>
<th>15 days</th>
<th>30 days</th>
<th>90 days</th>
<th>1 yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOREC</td>
<td></td>
<td></td>
<td></td>
<td>Upper Ext Fugl-Meyer</td>
<td></td>
</tr>
<tr>
<td>(observational)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPASS</td>
<td></td>
<td></td>
<td></td>
<td>20 hrs OT</td>
<td>ARAT</td>
</tr>
<tr>
<td>(clinical trial)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dromerick et al, Front in Human Neurosci 2015
Acknowledgments

- Georgetown Center for Brain Plasticity and Recovery
 - Alex Dromerick
 - Elissa Newport
 - Barbara Bregman
 - Peter Turkeltaub

- Georgetown University
 - Amrita Cheema
 - Ming Tan

- UC Irvine
 - Howard Federoff
 - Massimo Fiandaca

Email: mae97@georgetown.edu