AMERICAN SOCIETY OF NEUROREHABILITATION ANNUAL MEDICAL SOCIETY OF NEUROREHABILITATION

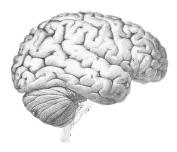
NOVEMBER 1-2, 2018 SAN DIEGO, CALIFORNIA HILTON SAN DIEGO BAYFRONT

de'MEDICI

WELCOME TO THE 2018 ASNR ANNUAL MEETING

On behalf of the American Society of Neurorehabilitation (ASNR), we are excited you are joining us for the 2018 Annual Meeting. Our meeting provides interactions among neurorehabilitation clinicians, basic scientists, industry representatives, and funders in a dynamic environment of presentations and discussion. This year symposia topics include:

- Spinal Plasticity after CNS Injury: Mechanisms and molecular correlates
- Genetics and Stroke Recovery
- Approaches to Manage Sensory Misalignment to Improve Functional Rehabilitation in the Upper Limb
- The Effects of Neuromodulation on Network Oscillatory Dynamics


We return with our popular Controversies in Neurorehabilitation panel in which experts and audience members will debate Biomarkers in Neurorehabilitation and Neural Repair. An oral abstract session will feature four of the top science abstracts. A new addition this year is the option of roundtable discussions on the topics of Traumatic Brain Injury Rehabilitation, Using and Managing Big Data, and the ASNR Clinical Research Network. We have left ample time for two poster sessions, which always generate stimulating discussion and provide outstanding opportunities for sharing science and networking.

Also, don't miss out on the ASNR Business Meeting for a chance to see how the organization works, find out who are this year's poster award winners, and refuel with a provided boxed lunch. Enjoy a lively and diverse two days of interaction.

Sincerely, Catherine E. Lang PT, PhD 2018 ASNR Program Committee Chair Washington University School of Medicine

ON BEHALF OF THE PROGRAM COMMITTEE:

Cathrin Buetefisch, MD, PhD, FASNR Jason Camel, MD, PhD S. Thomas Carmichael, MD, PhD Matthew Edwardson, MD Teresa Kimberley, PT, PhD Albert Lo, MD Sangeetha Madhavan, PT, PhD Kelsey Potter-Baker, PhD W. Zev Rymer, PhD, MD Heidi Schambra, MD Keith Tansey, MD, PhD Lewis Wheaton, PhD Steven Wolf, PhD, PT, FASNR Steven Zeiler, MD, PhD

BENEFITS OF MEMBERSHIP

Subscription to Neurorehabilitation and Neural Repair

First color page complimentary in printed *NNR* issue

Opportunity to serve on ASNR committees which provide guidance and carry out society initiatives

Access to Journal Watch

Reduced Annual Meeting fees

Access to the online directory

Networking opportunities with other neurorehabilitation professionals

MORE INFO AT ASNR.COM

The ASNR promotes: specialty training and identification of those with expertise in neurorehabilitation; professional and public education; basic science and clinical research in neurorehabilitation; communication and collaboration with people with neurological disorders and related organizations; and the mission of neurorehabilitation research.

GENERAL MEETING INFORMATION

TABLE OF CONTENTS

Program at a Glance	4
Program Details	6
Awards	9
ASNR Foundation Lecture	10
Special Interest Roundtables	14
Poster Sessions	16
Exhibitors	32

HANDOUTS

All attendees will receive a link to available meeting handouts. The link will be sent from info@asnr.com. There will not be any hard copies of handouts made available unless provided by the speaker.

ABSTRACTS

Abstract titles and presenters can be found on pages 16-30. Full text abstracts can be found online at www.asnr.com.

ANNUAL MEETING WIFI

Complimentary wifi will be available in the Annual Meeting space. Please visit registration for WiFi password.

ONSITE ASNR ANNUAL MEETING SURVEY

Please complete and return the Annual Meeting survey you received in your email prior to the meeting before you leave the meeting on Friday. Your responses will prove crucial to the future success of ASNR. Thank you!

ASNR TRAVEL FELLOWSHIPS FOR DIVERSITY

ASNR would like to thank the Eunice Kennedy Shriver National Institute Of Child Health & Human Development of the National Institutes of Health for their generous support of our Annual Meeting and in particular for support of the Diversity Travel Fellowship program.

JOIN THE DISCUSSION!

🗧 @ASNRehab 🔰 #ASNRehab18

PROGRAM AT-A-GLANCE

THURS. NOV. 1

7:00 - 8:00 am

Exhibits

7:00 am - 6:30 pm

Registration

8:00 - 10:00 am

Spinal Plasticity after CNS Injury: Mechanisms and molecular correlates

Organizer: Georgy Bakalkin, PhD

Speakers: Georgy Bakalkin, PhD James Grau, PhD John Martin, PhD Ian Winship, PhD

10:00 - 10:30 am

Break

10:30 am - 12:30 pm

Poster Session I

12:30 - 1:30 pm

Lunch

1:30 - 2:30 pm

Oral Abstract Sessions

Spontaneous Motor Recovery after Cerebrolysin Treatment in a Mouse Model of Stroke - Steven Zeiler, MD, PhD

Effect of Behavioral Practice Targeted at the Premotor-Prefrontal Component of the Motor Network after Stroke - Jill Stewart, PhD

Motor Cortex Inhibition with Somatosensory and Transcranial Direct Current Stimulation: A metaplasticity study - John Cirillo, PhD

Does Cognition Predict Ability to Learn a Novel Walking Pattern in Individuals Post Stroke? - Margaret French, PT, DPT, NCS

2:30 - 2:45 pm

Break

2:45 - 4:15 pm

Genetics and Stroke Recovery

Organizer: Steven Cramer, MD, MMSc

Speakers: Sunghee Cho, PhD Steven Cramer, MD, MMSc Mary Teena Joy, PhD Jin-Moo Lee, MD, PhD

4:15 - 4:30 pm

Break

4:30 - 5:30 pm

2018 ASNR Award Lectures

Outstanding Neurorehabilitation Clinician-Scientist (ONCS) Award Recipient

Moving Research in Stroke Rehabilitation Forward.

Gert Kwakkel, PhD, PT

Kenneth Viste, Jr., MD Memorial Lectureship Recipient

The Cognitive-motor Interface: What we know, tells us where we're going.

Laurel Buxbaum, PsyD

5:30 - 8:00 pm

Foundation Lecture

Neuroscience: Data Rich, Theory Poor

Brad Voytek, PhD

Reception to follow

Reception tickets available at registration

FRI. NOV. 2

7:00 - 8:00 am

Exhibits

7:00 am - 5:30 pm

Registration

8:00 - 10:00 am

Approaches to Manage Sensory Misalignment to Improve Functional Rehabilitation in the Upper Limb

Organizer: Lewis Wheaton, PhD

Speakers: David Reinkensmeyer, PhD Robert Sainburg, PhD Lewis Wheaton, PhD

10:00 - 10:30 am

Break

10:30 am - 12:30 pm

Poster Session II

12:30 - 1:30 pm

ASNR Business Meeting

All Welcome & Lunch Provided

1:30 - 3:00 pm

The Effects of Neuromodulation on Network Oscillatory Dynamics

Organizer: Karunesh Ganguly, MD, PhD

Speakers: Leonardo Cohen, MD, FASNR Flavio Frohlich, PhD Karunesh Ganguly, MD, PhD

1:30 - 3:00 pm

Special Interest Roundtables

Expanding Your Toolkit: How can you use data science to streamline your research and tackle bigger questions?

Discussion Leaders: Keith Lohse, PhD Kenneth Ottenbacher, PhD, OT

Growing Your Clinical Research Program: How can you use the CRN seed grant to advance your clinical research program to the next step?

Discussion Leaders: Daofen Chen, PhD Theresa Hayes Cruz, PhD Albert Lo, MD Carolee Winstein, PhD, PT, FAPTA, FAHA

Traumatic Brain Injury (TBI) Rehabilitation

Discussion Leaders: Rocio Norman, PhD, CCC-SLP Mary Jo Pugh, PhD, RN Sandeep Subramanian, PT, PhD

3:00 - 3:30 pm

Break

3:30 - 5:30 pm

Controversies in Neurorehabilitation: Biomarkers in Neurorehabilitation

Moderator: Steven Zeiler, MD, PhD

Speakers: Winston Byblow, PhD Matthew Edwardson, MD Albert Lo, MD Sangeetha Madhavan, PT, PhD

5:30 - 6:30 pm

Closing Reception

PROGRAM DETAILS

Spinal Plasticity after CNS Injury: Mechanisms and molecular correlates

Thursday, November 1 • 8:00 - 10:00 am • Aqua Ballroom DEF

SCHEDULE:

8:00 - 8:30 am Introduction. Motor Cortex and Spinal Cord Neuromodulation Produces Corticospinal Structural and Functional Plasticity to Promote Motor System Repair after Brain and Spinal Cord Injury - John Martin, PhD

8:30 - 8:55 am Modulating neuroplasticity in the spinal cord to improve recovery from stroke - Ian Winship, PhD

8:55 - 9:20 am Metaplastic modulation of spinal circuits: How alternative forms of stimulation can impact spinal cord plasticity - James Grau, PhD 9:20 - 9:45 am Motor impairment after traumatic brain injury: neuropeptide spinal

9:20 - 9:45 am Motor impairment after traumatic brain injury: neuropeptide spina mechanisms - Georgy Bakalkin, PhD

9:45 - 10:00 am Discussion

SPEAKERS:

Georgy Bakalkin, PhD Organizer

James Grau, PhD

John Martin, PhD

Ian Winship, PhD

Neuromodulation is an evolving therapy that targets specific neural circuits by a variety of stimuli including an electric current, a magnetic field, and chemical agents (neurohormones, growth factors, cytokines and enzymatic treatments). The speakers in this symposium, working in different experimental research areas, will focus on mechanisms and development of a translational neuromodulatory strategy to restore forelimb and hind limb function after CNS injuries. How motor cortex and spinal cord neuromodulation, alone and in combination, promotes corticospinal system functional and structural plasticity and motor function after injury will be discussed in the first talk. The second presentation will demonstrate that modulation of neuroplasticity in the spinal cord by targeted removal of plasticity-inhibiting singling, via digestion of chondroin sulphate proteoglycans (CSPGs) with chondroitinase ABC or by blocking CSPG receptor interactions with the endogenous growth promoting molecule pleiotrophin, can induce potent plasticity of corticospinal projections to the spinal grav matter and improve recovery even during chronic stroke. The third presentation will show how stimulation affects spinal cord plasticity depending upon temporal and behavioral relations. Predictable/controllable stimulation may enable spinal cord plasticity through up-regulation of brain-derived neurotrophic factor. In contrast, noxious input that is unpredictable / uncontrollable appears to inhibit neural plasticity that is linked to up-regulation of the cytokine tumor necrosis factor. Finally, evidence that effects of unilateral brain injury on hind limb motor functions are partially mediated by opioid neurohormones will be presented suggesting a potential of selective opioid antagonists for pharmacological correction of motor deficits secondary to brain injury.

Oral Abstract Session

Thursday, November 1 • 1:30 - 2:30 pm • Aqua Ballroom DEF

1:30 pm Spontaneous Motor Recovery after Cerebrolysin Treatment in a Mouse Model of Stroke - Steven Zeiler, MD, PhD

1:45 pm Effect of Behavioral Practice Targeted at the Premotor-Prefrontal Component of the Motor Network after Stroke - Jill Stewart, PhD

2:00 pm Motor Cortex Inhibition with Somatosensory and Transcranial Direct Current Stimulation: A metaplasticity study - John Cirillo, PhD

2:15 pm Does Cognition Predict Ability to Learn a Novel Walking Pattern in Individuals Post Stroke? - Margaret French, PT, DPT, NCS

John Cirillo, PhD

Margaret French, PT,

DPT, NCS

Jill Stewart, PhD

Steven Zeiler, MD, PhD

Genetics and Stroke Recovery

Thursday, November 1 • 2:45 - 4:15 pm • Aqua Ballroom DEF

SCHEDULE:

2:45 - 3:03 pm Pre-clinical genetic targets for stroke recovery - Mary Teena Joy, PhD
3:03 - 3:21 pm Impact of BDNF val66met SNP on functional recovery after stroke
-Sunghee Cho, PhD
3:21 - 3:39 pm Genetic influences on early neurological outcome after acute ischemic stroke - Jin-Moo Lee, MD, PhD
3:39 - 3:57 pm Genetic variation and stroke recovery - Steven Cramer, MD, MMSc
3:57 - 4:15 pm Discussion

This course will examine preclinical and clinical studies of genetic factors in relation to outcomes after stroke. Genetic studies provide insights at the molecular level and can be translated bidirectionally between animals and humans. The first talk will examine how knocking down the activity of C-C chemokine receptor type 5 (CCR5) promotes stroke recovery in animals. The second talk will examine effects on stroke recovery of the val66met polymorphism in brain derived neurotrophic factor (BDNF), which is common in humans and which in mice is associated with larger acute impairments but greater adaptation and thus enhanced motor recovery. Morphological and synaptic adaptations underlying this polymorphism's effects on recovery will be discussed. The third talk will review human genomics approaches in the acute stroke setting and will introduce the Genetics of Early Neurological Instability after Ischemic Stroke (GENISIS) Study, which uses a quantitative phenotype (change in NIHSS score between 6 and 24 hours after stroke onset) to examine genetic influences on early neurological outcome after acute ischemic stroke. The fourth talk will review genetic correlates of stroke recovery in humans, with a focus on the BDNF val66met and Apolipoprotein E polymorphisms, as well as a polygene score that models human brain dopamine neurotransmission. Genetic research stands to elucidate mechanisms of recovery after stroke, provide insights into the basis for inter-subject variability in outcomes. and inform development of treatment approaches that target neural repair following stroke.

SPEAKERS:

Steven Cramer, MD, MMSc Organizer

Sunghee Cho, PhD

Mary Teena Joy, PhD

Jin-Moo Lee, MD, PhD

2018 ASNR AWARD CEREMONY

THURSDAY, NOVEMBER 1 · 4:30 - 5:30 PM · AQUA BALLROOM DEF

2018 FELLOWS OF AMERICAN SOCIETY OF NEUROREHABILITATION RECIPIENTS

The title of Fellow of the American Society of Neurorehabilitation is reserved for individuals who have contributed significantly to the field of Neurorehabilitation, and also to the American Society of Neurorehabilitation.

Gottfried Schlaug, PhD Keith Tansey, MD, PhD Carolee Winstein, PhD, PT, FAPTA, FAHA

4:35 pm 2018 OUTSTANDING NEUROREHABILITATION CLINICIAN-SCIENTIST AWARD RECIPIENT

The award, based on the evaluation of his or her peers, honors scholarly achievements and contributions to knowledge about mechanisms of neural repair, translational research from mechanisms of repair to clinical practice, or clinical Neurorehabilitation. Nominations are invited from the membership of the American Society of Neurorehabilitation. The American Society of Neurorehabilitation Education

Gert Kwakkel, PhD, PT

Foundation Board of Directors, made up of Past Presidents of the American Society of Neurorehabilitation (ASNR) selects the recipient of the award.

Moving research in stroke rehabilitation forward.

Gert Kwakkel, PhD, PT

5:05 pm

2018 KENNETH VISTE, JR., MD MEMORIAL LECTURESHIP RECIPIENT

Kenneth M. Viste, Jr., MD was a tireless advocate for Neurorehabilitation and ASNR, and was active in the organization since its inception as President, Membership Committee Chair and a member of the Practice Issues Committee. ASNR honors his memory by presenting the award annually to an individual that has supported the mission and vision of ASNR over the course of his or her career, by

Laurel Buxbaum, PsyD

supporting neurorehabilitation as a field, engaging in clinical and educational work, and making our medical peers aware of the importance of neurorehabilitation.

The Cognitive-Motor Interface: What We Know Tells Us Where We're Going Laurel Buxbaum, PsyD

ASNR FOUNDATION LECTURE

THURSDAY, NOVEMBER 1 • 5:30 - 6:00 PM • AQUA BALLROOM DEF

Plan to join us for a spirited presentation from Dr. Voytek. After our brains cannot take one last bit of information, we will gravitate to the Aqua Foyer and Terrace to take in some food, beverages, and relaxed conversation with colleagues.

Featured Talk:

Neuroscience: Data Rich, Theory Poor - Bradley Voytek, PhD

Neuroscience is creating data at an unprecedented rate. There is an explosion of "big data" initiatives in neuroscience, ranging from recording from thousands of neurons simultaneously, to massive repositories of thousands of peoples' worth of human functional and structural brain imaging,

to population-wide genetic data. Despite this wealth of data, major "theories of the brain" remain elusive. This has led many to lament that neuroscience is data rich, but theory poor. Here I argue that, through principled aggregation of these large, diverse neuroscience datasets, we can address critical issues in cognition and mental health. These data include textual data from the millions of peerreviewed neuroscience publications, functional and structural brain imaging data, demographic and genetic information, neural electrophysiology, gene expression profiles, and neuronal and glial physiology. Through such aggregation and integration, we can mine the data to find missing links and gaps in our knowledge; we can algorithmically generate plausible hypotheses for us. That is, we leverage the wealth of neuroscience data to reduce the paucity of neuroscience theories.

Reception Tickets:

\$25 for ASNR Members \$50 for Guests (Tickets will be available to purchase at registration for the reception.)

Approaches to Manage Sensory Misalignment to Improve Functional Rehabilitation in the Upper Limb

Friday, November 2 • 8:00 - 10:00 am • Aqua Ballroom DEF

SCHEDULE:

8:00 - 8:05 am Introduction - Lewis Wheaton, PhD
8:05 - 8:35 am Visual and proprioceptive alignment processes in basic control and stroke - Robert Sainburg, PhD
8:35 - 9:05 am Sensation, the missing limb, and prosthesis adaptation - Lewis Wheaton, PhD
9:05 - 9:35 am Robotic finger training after stroke and lost sensation - David Reinkensmeyer, PhD
9:35 - 10:00 am Questions and discussion

Significant research has identified the necessity of sensory integration, particularly visual and proprioceptive senses, to support motor control. Yet, misalignment of these sensory inputs has the potential to negatively influence motor outcomes in upper limb pathology. In this presentation, we hope to stimulate thoughts from research in healthy persons, persons with stroke, and persons with amputation that have to undergo motor learning in the upper limb to understand how sensory misalignment influences motor learning and control. These studies will consider neurophysiological, behavioral, and clinical outcomes to describe a multidimensional model of sensory misalignment in the upper limb. Further, as an extension of the 2017 ASNR Pre-meeting, we will also consider how sensory misalignment intersects with implementation of technological advances in rehabilitation robotics, such as exoskeletons and prosthetics. While these devices have great potential to promote functional rehabilitation outcomes, it is possible that the present state of technology may show limitations in persons with sensory misalignment. We will further provide insights on how variables such as level of pathology, handedness, and cognition, differently influence these outcomes. Following the presentation, we hope to engage in a conversation on whether motor rehabilitation research should additionally consider sensory misalignment to potentially yield improved motor function.

SPEAKERS:

Lewis Wheaton, PhD Organizer

David Reinkensmeyer, PhD

Robert Sainburg, PhD

ASNR BUSINESS MEETING

Friday, November 2 • 12:30 - 1:30 pm All welcome with lunch provided.

The Effects of Neuromodulation on Network Oscillatory Dynamics

Friday, November 2 • 1:30 - 3:00 pm • Aqua Ballroom DEF

SCHEDULE:

1:30 - 1:33 pm Introduction - Karunesh Ganguly, MD, PhD
1:33 - 1:58 pm Direct Current Stimulation to Modulate Oscillatory Dynamics in Rodents and Non-Human Primates - Karunesh Ganguly, MD, PhD
1:58 - 2:23 pm Brain oscillatory activity and motor learning - Leonardo Cohen, MD, FASNR
2:23 - 2:48 pm Network Neuromodulation: From Target Engagement to Treatment -Flavio Frohlich, PhD
2:48 - 3:00 pm Discussion

An important goal of neural engineering approaches to improving motor recovery after stroke is to develop generative models of neural circuit dynamics that may guide development of novel neuromodulatory approaches that dynamically target task-related processes. We specifically aimed to identify neurophysiological dynamics associated with skilled execution; assess whether these same dynamics are related to recovery; and finally, to evaluate whether temporally precise electrical neuromodulation of these dynamics can improve motor function post-stroke. Recent work has highlighted the importance of transient low-frequency oscillatory (LFO, < 4 Hz) activity in the healthy motor cortex (M1) during skilled upper-limb tasks. These brief bouts of oscillatory activity may establish the timing or sequencing of motor actions. Here we show that LFOs track motor recovery post-stroke and can be a physiological target for neuromodulation. In rodents, we found that reach-related LFOs, as measured in both the LFP and related spiking activity, were diminished after stroke and that spontaneous recovery was closely correlated with their restoration in perilesional cortex. Sensorimotor LFOs were also diminished in a human subject with chronic disability after stroke in contrast to two non-stroke subjects who demonstrated robust LFOs. Therapeutic delivery of electrical stimulation time-locked to the expected onset of LFOs was found to significantly improve skilled reaching in stroke animals. Moreover, we have recently conducted experiments in non-human primates that preliminarily suggest that this framework may also apply in primates. Together, our results suggest that restoration of cortical oscillatory dynamics is important for recovery of upper-limb function.

SPEAKERS:

Karunesh Ganguly, MD, PhD Organizer

Leonardo Cohen, MD, FASNR

Flavio Frohlich, PhD

Controversies in Neurorehabilitation: Biomarkers in Neurorehabilitation

Friday, November 2 • 3:30 - 5:30 pm • Aqua Ballroom DEF

SCHEDULE:

3:30 pm - 3:35 pm Introduction and rules of engagement - Steve Zeiler, MD, PhD 3:35 pm - 3:50 pm Blood Biomarkers of Stroke Recovery are Promising and Should be More Widely Studied by the Neurorehabilitation Community - Matthew A. Edwardson, MD

3:50 pm - 4:05 pm *ALS, but What about These Great Neurophysiological Markers?* - Sangeetha Madhavan, PT, PhD

4:05 pm - 4:20 pm Biomarker-based Stratification is Essential in Stroke Motor Recovery Trials - Winston Byblow, PhD

4:20 pm - 4:35 pm What Level of Evidence is Necessary for FDA Approval of a Biomarker, When ss FDA Approval Needed - Albert Lo, MD 4:35 pm- 5:30 pm Open Forum

There has been an explosion of research into biomarkers across biomedical science fields, and neurorehabilitation is no exception. New papers studying potential biomarkers for neurorehabilitation pop up in our literature searches on an almost daily basis. This leads one to wonder just what is (or could be) a biomarker, and how does a scientist or the field decide if and when a candidate biomarker moves from the research realm into clinical practice. This session will offer expert opinions in the field and stimulate debate with the audience around the following questions: What is the best source for neurorehabilitation biomarkers? Should biomarkers only come from blood/serum? What is the type and level of evidence needed before a responsible researcher should call something a biomarker? What is the level of evidence needed before a biomarker should be used to measure outcomes in trials? What is the level of evidence needed before a biomarker should be used in clinical practice? Our speakers will explore these issues across a variety of neurorehabilitation conditions and potential sources of biomarkers. We welcome invigorating audience participation in the second half of the session.

SPEAKERS:

Matthew Edwardson, MD Organizer

Steve Zeiler, MD, PhD Moderator

Winston Byblow, PhD

Albert Lo, MD

Sangeetha Madhavan, PT, PhD

CLOSING RECEPTION

Aqua Ballroom Terrace • 5:30 - 6:30 pm Keep the discussion going over small bites and cash bar.

SPECIAL INTEREST ROUNDTABLES

FRIDAY, NOVEMBER 2 • 1:30 - 3:00 PM • AQUA BALLROOM A

Expanding Your Toolkit: How can you use data science to streamline your research and tackle bigger questions?

Advancing the field of neurorehabilitation requires researchers to collectively gather, store, manage, and analyze vast amounts of data. These data take many forms including medical imaging, clinical assessments, electronic health records, or even wearable devices. In this roundtable, we want to discuss how to modernize your data "ecosystem" in-line with the NIH's "Strategic Plan for Data Science" (including advanced data storage, management, and analysis methods).

Keith Lohse, PhD

Kenneth Ottenbacher, PhD, OT

Traumatic Brain Injury (TBI) Rehabilitation

Traumatic Brain Injury (TBI) is a leading cause of adult morbidity and mortality in the US. The direct and indirect costs, including loss of productive workdays, cost the economy an average of \$60 billion each year. Research has shown that individuals with TBI experience difficulty with mobility, communication and community reintegration. This roundtable discussion will provide a holistic review of the impact of TBI on functional recovery and outcomes informing rehabilitation research and practice. The roundtable moderators, all of whom have active programs of research related to TBI, will facilitate a roundtable discussion regarding issues related to developing research in this area as well as the challenges of translating this research into meaningful clinical practice.

Rocio Norman, PhD, CCC-SLP

Mary Jo Pugh, PhD, RN

Sandeep Subramanian, PT, PhD

Growing your Clinical Research Program: How can you use the CRN seed grant to advance your clinical research program to the next step and become a funded investigator in neurorehabilitation?

Large multi-site clinical research projects are not born fully grown. Instead they develop through carefully crafted and well though through steps, often beginning with a small seed grant like the one ASNR offers. This round table will discuss a number of critical issues pertaining to growing your clinical research program. These issues include: lessons learned from previous clinical trials of neurorehabilitation; the importance of grantsmanship and identification of "critical knowledge gaps" for proposals; and how the seed grant mechanism can be used to grow your clinical research program.

Discussion Questions:

- What are some of the lessons learned from the rehabilitation clinical trials attempted in the past decade and what NINDS and NCMRR can do in working with the clinical research community to move the field forward?
- As a new neurorehab clinical investigator, what role do I see myself in contributing to the neural rehabilitation clinical research enterprise?
- How do I decide what constitutes a "critical knowledge gap", in becoming a funded investigator in neurorehabilitation?
- How can I think about using a small seed grant to advance my research program toward addressing a critical knowledge gap in neurorehabilitation?

Daofen Chen, PhD

Theresa Hayes Cruz, PhD

Albert Lo, MD

Carolee Winstein, PhD, PT, FAPTA, FAHA

POSTER SESSION I

THURSDAY, NOVEMBER 1 • 10:30 - 12:30 PM • AQUA BALLROOM ABC

T1: Effects of TDCS Electrode Size on Motor Cortical Excitability of the Quadriceps Muscles

Aviroop Dutt-Mazumder, Scott Brown, Edward Washabaugh, Aastha Dharia, Reesha Talati, Amanda Vogel, Adam Gardi, <u>Chandramouli Krishnan</u> *Univ. of Michigan, Ann Arbor, USA*

T2: Evaluation of Motor Cortical Excitability using Evoked Torque Responses: A New Tool with High Reliability

Aviroop Dutt-Mazumder, Edward Washabaugh, Scott Brown, <u>Chandramouli Krishnan</u> Univ. of Michigan, Ann Arbor, USA

T3: Telerehabilitation: Post-MCA stroke: A literature review

Abhi Jain<u>, Jennifer Mao</u> Philadelphia College of Osteopathic Medicine

T4: Lower Limb Transcranial Magnetic Stimulation Measures in the Ipsilesional Hemisphere after Stroke: Reliability and relationship with lower limb motor function

*2017 Clinical Research Network (CRN) Grant Recipient <u>Hui-Ting Goh</u>¹, Kendall Connolly¹, Jenna Hardy¹, Delaina Walker-Batson^{1,2} ¹Texas Woman's Univ., Dallas, USA. ²The Stroke Center-Dallas, Dallas, USA

T5: Task Practice Intensity Estimation in Individuals with Traumatic Brain Injury

Sandeep Subramanian¹, Jericho Barela¹, Laura Landry¹, Bryan Sheffield¹, Esequiel Salcedo², Patricia Rivera³, Elizabeth Koyle³, Jesse Neeley^{3,4}, Ramesh Grandhi^{5,3} ¹Physical Therapy, UT Health San Antonio, San Antonio, USA. ²School of Nursing, UT Health San Antonio, San Antonio, USA. ³Univ. Hospital-Univ. Health System, San Antonio, USA. ⁴Rehabilitation Medicine, UT Health San Antonio, San Antonio, USA. ⁵Neurosurgery, UT Health San Antonio, San Antonio, USA

T6: Predicting Lower Extremity Motor Recovery After Stroke: Imaging biomarker improves motor score predictions

Fanny Munsch $^{\tt L2,}$ Thomas Tourdias $^{\tt 3,4},$ Igor Sibon $^{\tt 3,4},$ Vincent Dousset $^{\tt 3,4},$ $\underline{Gottfried}$

¹BIDMC, Boston, USA. ²Harvard Medical School, Boston, USA. ³CHU Bordeaux, Bordeaux, France. ⁴Bordeaux Univ., Bordeaux, France

T7: The Kinect Motion Capture Reachable Workspace as an Assessment for Stroke Recovery

<u>Vicky Chan</u>, Gregorij Kurillo, Maya Hatch, Jay Han Univ. of California, Irvine, Irvine, USA

Abstract titles are printed as submitted by the author. Full abstracts can be found at www.asnr.com

T8: Paired Brain and Spinal Cord Stimulation Strengthens Spared Spinal Circuits After Injury

<u>Ajay Pal</u>¹, Aldo Garcia-Sandoval², Shivakeshavan Ratnadurai-Giridharan¹, Qi Yang¹, Thelma Bethea¹, Aditya Ramamurthy¹, Tong-Chun Wen¹, Walter Voit², Jason Carmel^{1,3} ¹Burke Neurological Inst., White Plains, NY, USA. ²Dept. of Mechanical Engineering, Dept.s of Materials Science and Engineering and Bioengineering, The Univ. of Texas at Dallas, Richardson, Texas, USA. ³Brain Mind Research Inst. and Dept.s of Neurology and Pediatrics, Weill Cornell Medicine, New York, NY, USA

T9: Motor Function as Predictor of Inpatient Length of Stay and Discharge Destination in Stroke Rehabilitation

<u>Martje Tazelaar</u>, Martine Eckhardt, Irene Ploeg, Majanka Heijenbrok, Gerard Ribbers *Rijndam Rehabilitation Centre, Rotterdam, Netherlands*

T10: Pupillary Response to Dual-tasking in Parkinson's Disease: A proof-ofconcept study

Melike Kahya, Kelly Lyons, Rajesh Pahwa, Abiodun Akinwuntan, Hannes Devos Univ. of Kansas Medical Center, Kansas City, USA

T11: History of Depression and Antidepressant Use at Stroke Onset and Post-Stroke Post-Acute Rehabilitation Care: The Brain Attack Surveillance in Corpus Christi (BASIC) Project

<u>Eric Stulberg</u>^{1,2}, Liming Dong¹, Alexander Zheutlin¹, Sehee KIM¹, Edward Claflin¹, Lesli Skolarus¹, Lewis Morgenstern¹, Lynda Lisabeth¹

¹Univ. of Michigan, Ann Arbor, USA. ²Northwestern Univ. Feinberg School of Medicine, Chicago, USA

T12: Interlimb Differences during Bimanual Aiming after Stroke: Effect of target distance

<u>Rini Varghese</u>¹, Robert Sainburg², James Gordon¹, Carolee Winstein¹ ¹Univ. of Southern California, Los Angeles, USA. ²Dept. of Kinesiology and Neurology. Penn State Univ.

T13: Effects of the Aerobic Exercise with Limbs Compression and Body Cooling on Individuals with Post-Concussion Syndrome

<u>Yi-Ning Wu</u>¹, Jessica Gravel², Matthew White², Josh Avery², Terrie Enis², Caroline Stark¹, Robert Cantu²

¹Univ. of Massachusetts Lowell, Lowell, USA. ²Emerson Hospital, Concord, USA

T14: Repeated AbobotulinumtoxinA Injections Benefit Walking Speed, Step Length and Cadence in Adults with Spastic Hemiparesis due to Stroke or Traumatic Brain Injury

Alberto Esquenazi¹, Allison Brashear², Thierry Deltombe³, <u>Brian Carlson</u>⁴, Anne-Sophie Grandoulier⁵, Claire Vilain⁵, Philippe Picaut⁵, Jean-Michel Gracies⁶

¹MossRehab Gait and Motion Analysis Laboratory, Elkins Park, USA. ²Wake Forest School of Medicine, Winston-Salem, USA. ³Centre Hospitalier Universitaire UCL Namur site Mont-Godinne, Yvoir, Belgium. ⁴Ipsen Biopharmaceuticals, Basking Ridge, USA. ⁵Ipsen Pharma, Les Ulis, France. ⁶EA 7377 BIOTN, Université Paris-Est, Hospital Albert Chenevier-Henri Mondor, Service de Rééducation Neurolocomotrice, Créteil, France

T15: The Natural Trajectory of Upper Limb Performance in Daily Life Over the First 12-Weeks After Stroke

<u>Kimberly Waddell</u>, Michael Strube, Rachel Tabak, Catherine Lang Washington Univ., Saint Louis, USA

T16: Variability of Leg Movements Across Seven Days during Early Infancy

Weiyang Deng, Beth Smith Univ. of Southern California, Los Angeles, USA

T17: Development and Validation of Virtual Prism Adaptation Therapy in Subacute Stroke Patients with Hemispatial Neglect

<u>Won-Seok Kim</u>, Sungmin Cho, Jihong Park, Seo Hyun Park, Nam-Jong Paik Seoul National Univ. Bundang Hospital, Seongnam-si, Republic of Korea

T18: Contralesional Hindlimb Motor Response Induced by Unilateral Brain Injury: Evidence for extra spinal mechanism

Nikolay Lukoyanov¹, Liliana Carvalho¹, Hiroyuki Watanabe², Mengliang Zhang³, Daniil Sarkisyan², Olga Kononenko², Igor Bazov², Tatiana Yakovleva², Jens Schouenborg⁴, <u>Georgy Bakalkin²</u>

¹Instituto de Investigação e Inovação em Saúde, Instituto de Biologia Molecular e Celular, Departamento de Biomedicina da Faculdade de Medicina da Universidade do Porto, Porto, Portugal. ²Dept. of Pharmaceutical Biosciences, Uppsala Univ., Uppsala, Sweden. ³Dept. of Molecular Medicine, Univ. of Southern Denmark, Odense, Denmark. ⁴Neuronano Research Center, Dept. of Experimental Medical Science, Lund Univ., Lund, Sweden

T19: Effects of Remote Limb Ischemic Conditioning on Motor Learning and Muscle Strength in Healthy Young Adults: Phase I randomized controlled trial

<u>Swati Surkar</u>¹, Anna Mattlage¹, Marghuretta Bland¹, Jeff Gidday², Ling Chen¹, Tamara Hershey¹, Jin-Moo Lee¹, Catherine Lang¹

¹Washington Univ. School of Medicine, St. Louis, USA. ²LSU School of Medicine, New Orleans, USA

T2O: Stroke Recovery and the Effects of Intermittent Theta Burst Stimulation on Interhemispheric Inhibition

Rose Melchers, Mariana Leriche Vazquez, John Reynolds Otago Univ., Dunedin, New Zealand

T21: A Systematic Review Exploring Brain Activity to Index Neural Activity in Relation to Sensorimotor Upper Limb Impairment and Activities After Stroke

Lisa Tedesco Triccas¹, Sarah Meyer¹, Kenneth Camilleri², Dante Mantini¹, Tracey Camilleri², Geert Verheyden¹ 'KU Leuven, Leuven, Belgium, ²Univ, of Malta, Msida, Malta

T22: Is Cerebral Blood Flow a Potential Marker of Transcranial Direct Current Stimulation Induced Cortical Modulation in Chronic Stroke Survivors?

<u>Pooja Iyer</u>, Sangeetha Madhavan Univ. of Illinois at Chicago, Chicago, USA

T23: High Intensity Speed-based Treadmill Training Enables Walking Capacity and Neural Plasticity in Chronic Stroke Survivors

<u>Hyosok Lim</u>, Sivaramakrishnan Anjali, Pooja Iyer, Sangeetha Madhavan Univ. of Illinois at Chicago, Chicago, USA

Abstract titles are printed as submitted by the author. Full abstracts can be found at www.asnr.com

T24: Recovery of Gait Speeds is not Associated with TMS Induced Lower Limb Corticomotor Responses

<u>Anjali Sivaramakrishnan</u>, Sangeetha Madhavan Univ. of Illinois at Chicago, Chicago, USA

T25: Exercise-Dependent Upregulation of Angiogenic Proteins and Motor Function Recovery after Photothrombotic Stroke in Mice

*Presidential Award Finalist <u>Abdullah Al Shoyaib</u>, Faisal F. Alamri, Abbie Biggers, Srinidhi Jayaraman, Fakhrul Ahsan, Taslim A. Al-Hilal, Vardan T. Karamyan *Texas Tech Univ. Health Sciences Center, Amarillo, USA*

T26: Transcranial Direct Current Stimulation Plus Concurrent Activity May Influence Task Prioritization During Walking in People with Parkinson's Disease

Jyutika Mehta¹, Christina Criminger², <u>Chad Swank</u>¹, Sattam Alumutairi¹ ¹Texas Woman's Univ., Dallas, USA. ²Winston-Salem State Univ., Winston-Salem, USA

T27: Flexion Synergy Dependent Cortical Activity and Associated White Matter Changes During Attempted Paretic Hand Opening in Moderate to Severe Chronic Stroke

<u>Kevin Wilkins</u>, Jun Yao, Meriel Owen, Carson Ingo, Julius Dewald Northwestern Univ., Chicago, USA

T28: The Cellular Effects of rTMS in Healthy and Stroke-Damaged Brains: An in vivo intracellular electrophysiological study in the rat

<u>Natalie Matheson</u>¹, Simon Fisher², Jon Shemmell¹, John Reynolds¹ ¹Univ. of Otago, Dunedin, New Zealand. ²Univ. of Otago

T30: AbobotulinumtoxinA Using 2-mL Dilution Maintains Durable Functional Improvements Across Multiple Treatment Cycles

<u>Khashayar Dashtipour</u>¹, Gustavo Suarez², Pascal Maisonobe³, Laxman Bahroo⁴, Daniel Truong⁵, Richard Trosch⁶

¹Loma Linda Univ. School of Medicine, Loma Linda, USA. ²Ipsen Biopharmaceuticals, Basking Ridge, USA. ³Ipsen Pharma, Boulogne-Billancourt, France. ⁴Georgetown Univ. Hospital Pasquerilla Healthcare Center, Washington DC, USA. ⁵The Parkinson and Movement Disorder Inst., Fountain Valley, USA. ⁶Parkinson's and Movement Disorders Center, Farmington Hills, USA

T31: Can Paired Associative Stimulation be used to Modulate Resting-state Intracortical Connectivity?

*Presidential Award Finalist <u>Andrew Hooyman</u>, Alex Garbin, Beth Fisher, Jason Kutch, Carolee Winstein *Univ. of Southern California, Los Angeles, USA*

T33: Chronic Stroke Patients Using a Brain-Computer Interface for Motor Rehabilitation: A group study

Christoph Guger^{1,2,3}, Fan Cao^{1,3}, <u>Katrin Mayr¹</u>, Günter Edlinger^{1,2,3} ¹Guger Technologies OG, Graz, Austria. ²g.tec medical engineering GmbH, Schiedlberg, Austria. ³g.tec neurotechnology Inc., Albany, USA

T34: Exploring the Use of Visuospatial Tests to Predict Motor Learning Capacity in Older Adults

Jennapher Lingo VanGilder¹, Keith Lohse², Sydney Schaefer¹ ¹Arizona State Univ., Tempe, USA. ²Univ. of Utah, Salt Lake City, USA

T35: Convergence of Biological and Artificial Learning: Electroencephalography-Informed Adaptation of Neurorehabilitation Robots to Maximize Cognitive Engagement

Neelesh Kumar¹, Nick Georgiou^{1,2}, <u>Konstantinos Michmizos¹</u> ¹Rutgers Univ., Piscataway, USA. ²Univ. of Virginia, Charlottesville, USA

T37: Non-invasive Cervical Root Stimulation for Spinal Cord Injury

Jonah Levine¹, Yu-Kuang Wu^{2,1}, Sana Saeed¹, James LiMonta¹, Matthew Maher¹, Eric Bailey¹, Jaclyn Wecht¹, Noam Y. Harel^{1,2} ¹James J. Peters VAMC, New York, USA. ²Icahn School of Medicine, New York, USA

T38: Simultaneous tDCS and Gait Rehabilitation in Chronic Stroke, A Pilot Study

Jessica McCabe¹, Margaret Skelly¹, Elizabeth Hardin¹, Marom Bikson², <u>Svetlana Pundik^{1,3}</u> ¹Louis Stokes Cleveland VA Medical Center, Cleveland, USA. ²The City College of New York of the City Univ. of New York, New York, USA. ³Case Western Reserve Univ., Cleveland, USA

T40: Surface EMG-triggered Closed Loop Stimulation for Individuals with Spinal Cord Injury: A case report

Yu-Kuang Wu¹², Jonah Levine¹, Jaclyn Wecht¹, James Limonta¹, Matthew Maher¹, Eric Bailey¹, Sana Saeed¹, Noam Harel^{1,3,4}

¹Bronx Veterans Medical Research Foundation, Bronx, USA. ²Dept. of Rehabilitation Science Icahn School of Medicine at Mount Sinai, New York, USA. ³Dept. of Neurology Icahn School of Medicine at Mount Sinai, New York, USA. ⁴Dept. of Rehabilitation Medicine Icahn School of Medicine at Mount Sinai, New York, USA

T41: Inpatient Cognitive Rehabilitation following Traumatic Brain Injury: Main Effects and Patient by Therapy Interactions using Causal Inference Models

Keith Lohse, Tianyu Zheng, Tom Greene, Jacob Kean, Angela Presson, Jincheng Shen Univ. of Utah, Salt Lake Cty, USA

T42: Identifying the Optimal Resistance to Increase Unilateral Propulsion Force with a Novel Mechanical Gait Training Device

<u>Krista Fjeld</u>¹, Terence Thomas¹, Siyao Hu^{2,3}, Katherine Kuchenbecker^{4,3} ¹SUNY Stony Brook, Stony Brook, NY, USA. ²Schlumberger-Doll Research Center, Cambridge, MA, USA. ³Univ. of Pennsylvania, Philadelphia, PA, USA. ⁴Max Planck Inst. for Intelligent Systems, Stuttgart, Germany

T43: Cortical Inhibitory/Excitatory Balance during Dynamic Plantarflexion Scales with Walking Speed

<u>Caitlin Banks</u>¹², Virginia Little², Qian Ding^{3,2}, Carolynn Patten^{2,1,3} ¹Univ. of California, Davis, Davis, CA, USA. ²VA Northern California Healthcare System, Martinez, CA, USA. ³UC Davis School of Medicine, Sacramento, CA, USA

Abstract titles are printed as submitted by the author. Full abstracts can be found at www.asnr.com

T45: Astrocytic Mechanisms of Neuronal Synchronization and Local Plasticity in Motor Learning: A Computational Study

Ioannis Polykretis, Vladimir Ivanov, <u>Konstantinos Michmizos</u> *Rutgers Univ., Piscataway, USA*

T46: A Three-dimensional Quantitative Model of Finger and Hand Kinematics During Functional Tasks

Tomas Oppenheim¹, Jenny Trieu², <u>Adelyn Tu-Chan²</u>, Karunesh Ganguly² 1California State Univ. Maritime Academy, Vallejo, USA. ²Univ. of California San Francisco, San Francisco, USA

T47: Changes in Corticomotor Excitability Associated with Successful Recovery of Upper Extremity Motor Function Post Stroke

<u>Shashwati Geed</u>¹², Farhanaz Nowshin², Jessica Barth², Michelle Harris-Love³, Peter Lum⁴, Alexander Dromerick^{2,1}

¹Georgetown Univ. Medical Center, Washington, DC, USA. ²MedStar National Rehabilitation Hospital, Washington, DC, USA. ³George Mason Univ., Fairfax, VA, USA. ⁴The Catholic Univ. of America, Washington, DC, USA

T48: Home-based Daily Exercises Using Wearable Motion Sensors for Community Dwelling Stroke Survivors with Hemiparesis

Jeremy Fidock, Marissa Wuennemann, Avrielle Rykman Peltz, Dylan Edwards Burke Neurological Inst., White Plains, USA

T49: Concurrent Reorganization in Cortex and Striatum During Motor Recovery after Stroke

Ling Guo^{1,2}, Seok-Joon Won², Karunesh Ganguly^{1,2} ¹Univ. of California, San Francisco, San Francisco, USA. ²San Francisco Veterans Affairs Medical Center, San Francisco, USA

T50: Corticospinal Tract Wiring and Brain Lesion Characteristics in Unilateral Cerebral Palsy: Determinants of upper limb motor and sensory function

<u>Cristina Simon-Martinez</u>¹, Ellen Jaspers², Lisa Mailleux¹, Els Ortibus¹, Katrijn Klingels^{1,3}, Nicole Wenderoth², Hilde Feys¹

¹KU Leuven, Leuven, Belgium. ²ETH Zurich, Zurich, Switzerland. ³Hasselt Univ., Hasselt, Belgium

T51: Case Study - The effect of the use of an EMG-driven FES device for finger extension on the expression of the flexion synergy in an individual with severe hemiparetic stroke

<u>Dylan Fitzsimons</u>¹, Carolina Carmona¹, Kevin B. Wilkins¹, Justin Drogos¹, Julius P. A. Dewald^{2,3,1}, Jun Yao¹

¹Dept. of Physical Therapy and Human Movement Sciences, Northwestern Univ., Chicago, USA. ²Dept. of Biomedical Engineering, Northwestern Univ., Chicago, USA. ³Dept. of Physical Med & Rehab., Northwestern Univ., Chicago, USA

T52: Brain Source Analysis of Motor Planning for Initiating Stepping in Individuals with Subacute Stroke: A case series

<u>Sue Peters</u>¹, S. Jayne Garland², Bimal Lakhani¹, Anthony Herdman¹, Lara Boyd¹ ¹Univ. of British Columbia, Vancouver, Can.. ²Western Univ., London, Can.

T53: Paired Associative Stimulation as a Tool to Assess Plasticity Enhancers in Chronic Stroke

<u>Joshua Silverstein</u>¹, Mar Cortes¹, Katherine Tsagaris¹, Alejandra Climent^{1,2}, Linda Gerber³, Clara Oromendia³, Pasquale Fonzetti^{4,3}, Rajiv Ratan^{3,1}, Tomoko Kitago^{1,3}, Marco Iacoboni^{5,6}, Allan Wu^{6,7}, Bruce Dobkin^{8,9}, Dylan Edwards^{3,1}

¹Burke Neurological Inst., White Plains, USA. ²Sant Joan de Deu Hospital, Barcelona, Spain. ³Weill Cornell Medical College, New York, USA. ⁴Burke Rehabilitation Hospital, White Plains, USA. ⁵UCLA Semel Inst. for Neuroscience and Human Behavior, Los Angeles, USA. ⁶Ahmanson-Lovelace Brain Mapping Center, Los Angeles, USA. ⁷Univ. of California, Los Angeles, USA. ⁸Geffen School of Medicine, Los Angeles, USA. ⁹Reed Neurologic Research Center, Los Angeles, USA

T54: Severity of Impairment is Important When Exploring Biomarkers of Upper Limb Outcome Post-Stroke

* Fletcher H. McDowell Award Finalist

<u>Kate Hayward^{1,2}</u>, Jennifer Ferris², Keith Lohse³, Michael Borich⁴, Steve Cramer⁵, Alexandra Borstad^{6,7}, Jill Stewart⁸, Sean Dukelow⁹, Jessica Cassidy⁵, Sonja Findlater⁹, Jason Neva², Lara Boyd²

¹Florey Inst. of Neuroscience and Mental Health, Melbourne, Australia. ²Univ. of British Columbia, Vancouver, Can. ³Univ. of Utah, Salt Lake City, USA. ⁴Emory Univ., Atlanta, USA. ⁵Univ. of California, Irvine, USA. ⁶College of St. Scholastica, Duluth, USA. 70hio State Univ., Columbus, USA. ⁸Univ. of South Carolina, Columbia, USA. ⁹Univ. of Calgary, Calgary, Can.

T55: The Importance of Edinburgh Handedness Inventory Short Form to Determine Handedness in Seventeen Indonesian Stroke Patients - A case series

<u>Widjajalaksmi Kusumaningsih</u>, Herry Hong

Dept. of Physical Medicine and Rehabilitation, Faculty of Medicine, Univ. of Indonesia, Ciptomangunkusumo Hospital, Jakarta, Indonesia

POSTER SESSION II

FRIDAY, NOVEMBER 2 • 10:30 - 12:30 PM • AQUA BALLROOM ABC

F1: How Anticipatory Postural Adjustments Affect Protective Steps: A step-bystep multi-level analysis

Daniel Peterson¹, <u>Keith Lohse²</u>, Martina Mancini³ ¹Arizona State Univ., Tempe, AZ, USA. ²Univ. of Utah, Salt Lake City, UT, USA. ³Oregon Health Sciences Univ., Portland, OR, USA

F2: Asymmetric Hindlimb Posture and Withdraw Reflexes Induced by Unilateral Brain Injury are Encoded in Spinal Cord

Mengliang Zhang¹, Hiroyuki Watanabe², Daniil Sarkisyan², Jonas Thelin³, Jens Schouenborg³, <u>Georgy Bakalkin²</u>

¹Dept. of Molecular Medicine, Univ. of Southern Denmark, Odence, Denmark. ²Dept. of Pharmaceutical Biosciences, Uppsala Univ., Uppsala, Sweden. ³Neuronano Research Center, Dept. of Experimental Medical Science, Lund Univ., Lund, Sweden

F3: Assessing Task Execution Abilities for Communication of Patients with Unresponsive Wakefulness Syndrome Using a Vibro-Tactile P300 Braincomputer Interface

Christoph Guger^{1,2}, Rossella Spataro³, <u>Katrin Mayr¹</u>, Günter Edlinger^{1,2} ¹Guger Technologies OG, Graz, Austria. ²g.tec medical engineering GmbH, Schiedlberg, Austria. ³ALS Clinical Research Center, BioNeC, Univ. of Palermo, Palermo, Italy

F4: Treatment Frequency for Long-Term Efficacy of AbobotulinumtoxinA Injections: A phase 3 study in patients with upper limb spasticity following stroke or traumatic brain injury

Jean-Michel Gracies1, Allison Brashear², Svetlana Khatkova³, <u>Brian Carlson</u>⁴, Anne-Sophie Grandoulier⁵, Philippe Picaut⁵

¹EA 7377 BIOTN, Université Paris-Est, Hospital Albert Chenevier-Henri Mondor, Service de Rééducation Neurolocomotrice, Créteil, France. ²Wake Forest School of Medicine, Winston-Salem, USA. ³Center of Ministry of Health and Social Development of Russian Federation, Moscow, Russian Federation. ⁴Ipsen Biopharmaceuticals, Basking Ridge, USA. ⁵Ipsen Pharma, Les Ulis, France

F5: Effect of the Gait Imagery Related Supplementary Motor Area Facilitation Using Functional Near Infrared Spectroscopy Mediated Neurofeedback on Post Stroke Balance and Upper Limb Function

<u>Masahito Mihara^{1,2}, Hiroaki</u> Fujimoto^{3,2}, Hironori Otomune^{2,3}, Noriaki Hattori^{2,3}, Yoshiyuki Watanabe², Teiji Kawano³, Megumi Hatakenaka³, Hajime Yagura³, Ichiro Miyai³, Hideki Mochizuki²

¹Kawaqsaki Medical School, Kurashiki, Japan. ²Osaka University Graduate School of Medicine, Suita, Japan. ³Morinomiya Hospital, Osaka, Japan

F6: Transcranial Direct Current Stimulation Effects on Cerebral Blood Flow and Motor Learning

<u>Anant Shinde</u>^{1,2}, Fanny Munsch^{2,1}, David Alsop^{2,1}, Gottfried Schlaug^{2,1} ¹Harvard Medical School, Boston, USA. ²Beth Israel Deaconess Medical Center, Boston, USA

Abstract titles are printed as submitted by the author. Full abstracts can be found at www.asnr.com

F7: Towards Real-Time Prediction of Freezing of Gait in Parkinson's Disease Using Spectral and Temporal Features from Acceleration of Lower-Body Segments

<u>Nader Naghavi</u>, Eric Wade Univ. of Tennessee, Knoxville, Knoxville, USA

F8: Increased Resting Motor Network Connectivity is Associated with Positive Outcomes in Chronic Stroke

Daniel Lench, Akash Mishra, Colleen Hanlon Medical Univ. of SC, Charleston, USA

F9: Predictors of Recovery from Acute Aphasia

Julius Kernbach¹, Andrea Norton², Karen Chenausky³, Sarah Marchina¹, <u>Gottfried</u> <u>Schlaug¹</u>

¹Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, USA. ²Beth Israel Deaconess Medical Center, Boston, USA. ³Boston Univ., Boston, USA

F10: Clinical Translation of Early Clinical and Neuroimaging Biomarkers to Predict Upper Extremity Stroke Motor Recovery

David Lin¹, Alison Cloutier¹, Samuel Snider¹, Fabio Giatsidis¹, Jessica Ranford¹, Kristin Parlman¹, Susan Fasoli², Teresa Kimberley², Steven Cramer³, Seth Finklestein¹, Leigh Hochberg¹

¹Massachusetts General Hospital, Boston, USA. ²MGH Inst. of Health Professions, Boston, USA. ³Univ. of California Irvine, Irvine, USA

F11: Grey Matter Hypertrophy in the Right Hemisphere Explains Variance in Speech-Motor Outcomes in Chronic Aphasia

<u>Sebastien Paquette</u>, Andrea Norton, Gottfried Schlaug Beth Israel Deaconess Medical Center / Harvard Medical School, Boston, USA

F12: Differential Effects of Low-Frequency rTMS on Cortical Excitability and Inhibition in Aged Healthy Participants

Lauren Edwards¹, Miles Wischnewski¹, Deborah Barany¹, Isabelle Vernon¹, Daniel Drake², Gerry Hobbs³, Cathrin Buetefisch¹

¹Emory Univ., Atlanta, USA. ²Columbia Univ., New York, USA. ³West Virginia Univ., Morgantown

F13: A Novel Method for Quantifying Interlimb Coordination in Persons with Hemiparesis Post-Stroke

*2016 Clinical Research Network (CRN) Grant Recipient <u>Susan Duff</u>¹, Aaron Miller², Lori Quinn³, Lauri Bishop³, Gregory Youdan³, Heather Ruthrauff⁴, Eric Wade² ¹Chapman Univ., Irvine, USA.²Univ. of Tennessee, Knoxville, USA. ³Teachers College,

Columbia Univ., New York, USA. 4 Children's Hospital of Philadelphia, Philadelphia, USA

F14: Proprioception After Stroke - Examining Diffusion Properties in Sensory and Motor Pathways

* Fletcher H. McDowell Award Finalist <u>Sonja Findlater</u>, Erin Mazzerole, G. Bruce Pike, Sean Dukelow *Univ. of Calgary, Calgary, Canada*

24

F15: Alterations in Cortical Excitability and Motor Skill Practice Following a 3-Month Aerobic Exercise Program in Individuals with Parkinson's Disease

<u>Jason Neva</u>¹, Bimal Lakhani¹, Matthew Sacheli², Nicole Nielson², Jassamyn McKenzie², A. Jonathan Stoessl², Lara Boyd¹

¹Univ. of British Columbia, Vancouver, Can. ²Parkinson's Research Ctr., Vancouver, Can.

F16: Effects of Different Transcranial Direct Current Stimulation Devices on Motor Cortical Excitability

<u>Aviroop Dutt-Mazumder</u>, Scott Brown, Aastha Dharia, Amanda Vogel, Reesha Talati, Adam Gardi, Chandramouli Krishnan *Univ. of Michigan, Ann Arbor, USA*

F17: The Potential of Exercise Combined with an Exercise Mimetic Drug to Promote Functional Recovery Following Hindlimb Stroke

*Presidential Award Finalist

<u>Matthew McDonald^{1,2}</u>, Anthony Carter², Angela Dykes^{1,2}, Matthew Jeffers^{1,2}, Florance Franko¹, Baptiste Lacoste^{1,2,3}, Dale Corbett^{1,2}

¹Univ. of Ottawa, Ottawa, Canada. ²Canadian Partnership for Stroke Recovery, Ottawa, Canada. ³Ottawa Hospital Research Inst., Ottawa, Canada

F18: Proportional Recovery: How it Arises and Implications for Stroke Rehabilitation

Merav Rachel Senesh, <u>David J. Reinkensmeyer</u> Univ. of California Irvine, Irvine, USA

F19: Cortical-cerebellar Excitability Changes During Visuomotor Adaptation in Individuals with Middle Cerebral Artery (MCA) Stroke and Healthy Older Individuals

<u>Samantha Feldman</u>¹, Katlyn Brown², Julia Schmidt^{3,1}, Jennifer Ma¹, Jason Neva¹, Lara Boyd¹

¹Univ. of British Columbia, Vancouver, Canada. ²Univ. College London, London, ^{UK.} ³La Trobe Univ., Melbourne, Australia

F2O: Using Exploratory Learning to Encourage Selective Hip-Knee Joint Movement in Infants Born Full-Term and Preterm

Jeongah Kim, Barbara Sargent, Linda Fetters Univ. of Southern California, Los Angeles, USA

F21: A Mouse Model of Perinatal Stroke That Produces Targeted Injury in Sensorimotor Cortex and Contralateral Impairments in Forelimb Function

Isabelle Takoff, Mariana Gomez-Smith, Julian Pitney, <u>Greg Silasi</u> Univ. of Ottawa, Ottawa, Canada

F22: Neural Correlate of Movement Proficiency in Infants Learning Prone Locomotion

<u>Thubi H. A. Kolobe</u>¹, Andrew H. Fagg², David P. Miller², Lei Ding² ¹Univ. of Oklahoma Health Sciences Center, Oklahoma City, USA. 2Univ. of Oklahoma, Norman, USA

Abstract titles are printed as submitted by the author. Full abstracts can be found at www.asnr.com

F23: Exploring the Relationship Between Impaired Motor Coordination During Walking and Damage to Motor Pathways Following Stroke

<u>Shraddha Srivastava</u>¹, Bryant Seamon^{1,2}, Joshua Teves¹, Mark Bowden^{1,2}, Chris Gregory^{1,2}, Colleen Hanlon¹, Leonardo Bonilha¹, Truman Brown¹, Rick Neptune³, Steven Kautz^{1,2} ¹Medical Univ. of South Carolina, Charleston, USA. ²Ralph H. Johnson VA Medical Center, Charleston, USA. ³The Univ. of Texas, Austin, USA

F24: Acoustic Stimulation During a Daytime Nap to Enhance Sensorimotor Skill Performance in Older Adults With and Without a History of Stroke

<u>Brian Johnson</u>, Kelly Westlake Univ. of Maryland School of Medicine, Dept. of Physical Therapy & Rehabilitation Science, Baltimore, USA

F25: Functional Neuroimaging Predicts Motor Recovery in Early Stroke Rehabilitation

<u>Jessica M. Cassidy</u>, Kiranjot Kaur, Ashley K. Masuda, Ramesh Srinivasan, Steven C. Cramer Univ. of California, Irvine, Irvine, USA

F26: Chronic Stroke and Force: A Novel Assessment Tool

<u>Berkenesh Gebrekristos</u>¹, Daniel Neumaier², Adelyn Tu-Chan¹, Karunesh Ganguly¹ ¹Univ. of California, San Francisco, San Francisco, USA. ²California State Univ., Maritime Academy, Vallejo, USA

F27: Severity-specific Brain Stimulation for Promoting Paretic Upper Limb Motor Function in Chronic Stroke Patients

Yin-Liang Lln¹, Kelsey Potter-Baker^{1,2}, Vishwanath Sankarasubramanian³, David Cunningham^{4,5,2}, Adriana Conforto⁶, Nicole Varnerin¹, Xiaofeng Wang¹, Ken Sakaie¹, Jayme Knutson^{4,7}, Andre Machado¹, <u>Ela Plow¹</u>

¹Cleveland Clinic, Cleveland, USA. ²Louis Stokes Cleveland Dept. of Veteran's Affairs, Cleveland, USA. ³Univ. of Michigan, Ann Arbor, USA. ⁴Case Western Reserve Univ., Cleveland, USA. ⁵MetroHealth Medical Center, Cleveland, USA. ⁶Sao Paulo Univ., Sao Paulo, Brazil. ⁷MetroHealth Rehabilitation Inst., Cleveland, USA

F28: Assessing the Clinical- and Laboratory-based Criterion Validity of Four Methods for Flexion Synergy Quantification

<u>Grace C. Bellinger</u>, Michael D. Ellis Northwestern Univ., Chicago, IL, USA

F29: Patterns of Behavioural Impairment and Recovery Differ Based on Regionalization of Cortical Infarcts in Rats

<u>Matthew Jeffers</u>¹², Gillian Lahey³, Boris Touvykine⁴, Numa Dancause⁴, Dale Corbett^{1,2} ¹Univ. of Ottawa, Ottawa, Canada. ²Canadian Partnership for Stroke Recovery, Ottawa, Canada. ³Carleton Univ., Ottawa, Canada. ⁴Université de Montréal, Montréal, Canada

F30: Using Multi-channel Visual Feedback to Learn a New Walking Pattern

<u>Kevin Day</u>¹², Amy Bastian¹² *Presidential Award Finalist ¹Johns Hopkins Medical Inst., Baltimore, USA. ²Kennedy Krieger Inst., Baltimore, USA

Abstract titles are printed as submitted by the author. Full abstracts can be found at www.asnr.com

F31: Evidence of Altered Interhemispheric Communication in Paediatric Mild Traumatic Brain Injury

<u>Julia Schmidt</u>^{1,2}, Katlyn E. Brown^{3,4}, Samantha J. Feldman⁵, Shelina Babul^{6,7,8}, Jill G. Zwicker^{6,9,0}, Lara A. Boyd^{2,8}

¹Dept. of Occupational Therapy, La Trobe Univ., Melbourne, Australia. ²Dept. of Physical Therapy, Univ. of British Columbia, Vancouver, Can. ³Sobell Dept. of Motor Neuroscience and Movement Disorders, Univ. College London, London, UK. ⁴Graduate Program in Rehabilitation Sciences, Univ. of British Columbia, Vancouver, Can. ⁵Graduate Program in Neuroscience, Univ. of British Columbia, Vancouver, Can. ⁶Dept. of Pediatrics, Univ. of British Columbia, Vancouver, Can. ⁷BC Children's Hospital, Vancouver, Can. ⁸Djavad Mowafaghian Centre for Brain Health, Univ. of British Columbia, Vancouver, Can. ⁹BC Children's Hospital Research Inst., Vancouver, Can. ¹⁰Dept. of Occupational Science & Occupational Therapy, Univ. of British Columbia, Vancouver, Can.

F32: Does Matching Task-challenge to Patient-ability during Stroke Rehabilitation Promote Greater Post-Stroke Arm Motor Recovery Than Usual Care? The MAtching Task CHallenge (MATCH) Trial

<u>Michelle Woodbury</u>, Scott Hutchison, Christian Finetto, Andrew Fortune, Kelly Anderson, Abigail Lauer-Kelly, Viswanathan Ramakrishnan *Medical Univ. of South Carolina, Charleston SC, USA*

F33: Dual-tasking during Initial Learning Interferes with Savings of a Novel Walking Pattern

<u>Kristan Leech^{1,2}</u>, Amy Bastian^{1,2} ¹Kennedy Krieger Inst., Baltimore, USA. ²Johns Hopkins Univ., Baltimore, USA

F34: A Preliminary Study on Fatigue Severity Scale in Subacute and Chronic Post Stroke Patients Using Two Minute Walking Test: The Indonesian Experience

<u>Widjajalaksmi Kusumaningsih</u>, Teinny Suryadi Dept. of Physical Medicine and Rehabilitation, Faculty of Medicine, Univ. of Indonesia, Ciptomangunkusumo Hospital, Jakarta, Indonesia

F35: Neuroplasticity Following Interlimb Training with a Prosthesis Simulator in Intact Participants

<u>Bennett Alterman</u>, Shuo Wang, James Kling, Lewis Wheaton Georgia Inst. of Technology, Atlanta, USA

F36: MoTaStim-Foot, a Randomized, Single-blinded, Mixed-methods, Feasibility Study Exploring Sensory Stimulation of the Foot and Ankle Early Post-stroke

<u>Alison M. Aries</u>¹, Valerie M. Pomeroy², Julius Sim¹, Sue Read¹, Susan M. Hunter¹ ¹Faculty of Medicine and Health Sciences, Keele Univ., Keele, Staffordshire, UK. ²Acquired Brain Injury Rehabilitation Alliance (ABIRA), School of Health Sciences, Univ. of East Anglia, Norwich, UK

F37: Using a Novel Lever-drive Wheelchair to Increase Arm Movement Practice Early After Stroke: Preliminary Results of a Randomized Controlled Trial

Joan Lobo Prat¹, Daniel K. Zondervan², Christopher Lew¹, Brendan W. Smith³, <u>Vicky</u> <u>Chan¹</u>, Cathy Chou¹, Susan Shaw⁴, David J. Reinkensmeyer¹, Steven C. Cramer¹ ¹Univ. of California, Irvine, Irvine, USA. ²Flint Rehabilitation Devices, LLC, Irvine, USA. ³Loyola Marymount Univ., Los Angeles, USA. ⁴Rancho Los Amigos National Rehabilitation Center, Downey, USA

Abstract titles are printed as submitted by the author. Full abstracts can be found at www.asnr.com

27

F38: Using the Manumeter for Continuous Feedback on Hand Activity After Stroke: Preliminary Results

<u>Diogo S. de Lucena</u>^{1,2}, Justin B. Rowe³, Vicky Chan¹, Steven C. Cramer¹, David J. Reinkensmeyer¹ ¹Univ. of California, Irvine, Irvine, USA. 2CAPES Foundation, Ministry of Education of Brazil, Brasilia, Brazil. 3Flint Rehabilitation Devices, LLC, Irvine, USA

F39: A Novel Method of Producing Asymmetric Propulsive-force Generation During Walking Using Differential Fore-aft Resistance in Nonimpaired Individuals

<u>Avantika Naidu</u>, David Brown Univ. of Alabama At Birmingham, Birmingham, USA

F40: Generalizability of Muscle Synergies During Static and Dynamic Motor Tasks in the Arm Workspace of Stroke Survivors

Christopher Taylor, Lei Ma, Manuel Portilla-Jiménez, Jinsook Roh Temple Univ., Philadelphia, USA

F41: Influence of Descending Cortical Projections on Spinal Reflex Excitability in Post-stroke Individuals

<u>Alejandro Lopez</u>, Jiang Xu, Steven Eicholtz, Michael Borich, Trisha Kesar Emory Univ., Atlanta, USA

F42: Predicting Recovery of Upper Limb Function 6 Months after Middle Cerebral Artery Infarction Using Diffusion Tensor Imaging

Doo Young Kim¹, Junsoo Noh², Woo-Suk Tae^{3,2}, Yu Mi Hwang³, Yoonhye Na^{3,2}, <u>Sung Bom</u> <u>Pyun^{2,3}</u>

¹Catholic Kwandong Univ. International St Mary's Hospital, Seoul, Republic of Korea. ²Korea Univ. College of Medicine, Seoul, Republic of Korea. ³Brain Convergence Research Center, Seoul, Republic of Korea

F43: Understanding the Determinants of Reactive Step Choice in Parkinson's Disease

<u>Niveditha Muthukrishnan</u>, Daniel S. Peterson *Arizona State Univ., Tempe, USA*

F44: Effects of Visual Feedback on the Coordination of Pointing with a Prosthesis

Daniela Junckes da Silva Mattos, Scott Frey Univ. of Missouri, Columbia, USA

F45: Prediction of Aphasia Severity in Early and Later Subacute Phase of Stroke

Sekwang Lee¹, Yoonhye Na¹, Woo Suk Tae^{2,1}, <u>Sung Bom Pyun^{1,2}</u> ¹Korea Univ. College of Medicine, Seoul, Republic of Korea. ²Brain Convergence Research Center, Seoul, Republic of Korea.

F46: Leveraging Visual Search Patterns in the Trail-Making Task to Understand Cognitive Impairments in Stroke Patients

<u>Christopher Perry</u>, Adam Harrison, Troy Herter Univ. of South Carolina, Columbia, USA

Abstract titles are printed as submitted by the author. Full abstracts can be found at www.asnr.com

28

F47: Non-Paretic Hand Exercise to Task-Failure Increases Functional Connectivity to Paretic Hand in Chronic Stroke

Qian Ding^{1,2}, Theresa McGuirk^{1,2}, Elliott Perry^{1,2}, Carolynn Patten^{1,2} ¹Biomechanics, Rehabilitation, and Integrative Neuroscience (BRaIN) Lab, Univ. of California, Davis School of Medicine, Davis, USA. ²Northern California VA Healthcare System, Davis, USA

F48: Targeted Neuromodulation of Interhemispheric Connectivity after Stroke

Shiyu Lin, Jacqueline Palmer, <u>Michael Borich</u> Emory Univ., Atlanta, USA

F49: Backward Locomotor Treadmill Training Combined with Transcutaneous Spinal Direct Current Stimulation (tsDCS) in Stroke: A Pilot Feasibility and Safety Study

<u>Oluwole Awosika</u>¹, Saira Matthews², Emily Staggs¹, Christina Zhang¹, Nirguna Thalla¹, Rohitha Moudgal¹, Pierce Boyne³, Kari Dunning³, Daniel Woo¹, Brett Kissela¹ ¹Univ. of Cincinnati College of Medicine, Cincinnati, USA. ²Univ. of Cincinnati, Cincinnati, USA. ³Univ. of Cincinnati College of Allied Health Sciences, Cincinnati, USA

F50: A Novel EMG-based Robotic Control for Restoring Normal Synergies after Stroke

<u>Thomas Augenstein</u>, Edward Washabaugh, Christian Remy, Chandramouli Krishnan *Univ. of Michigan, Ann Arbor, USA*

F51: Validity of Subjective Sleep Inventories for Assessment of Sleepiness in Inpatient Rehabilitation for Stroke

Heather Johns¹, Elaina Cummer², Ellie Flack³, Sarah Neveux3, Elena Skornyakov³, Douglas Weeks⁴

¹Univ. of Washington, Seattle, USA. ²Wake Forest Univ., Winston-Salem, USA. ³Eastern Washington Univ., Spokane, USA. ⁴St. Luke's Rehabilitation Inst., Spokane, USA

F52: Interventions to Augment Upper Extremity Motor Improvement in Individuals with a Traumatic Brain Injury - A Systematic Review

Sandeep Subramanian, Melinda Fountain, Ashley Hood Dept. of Physical Therapy, UT Health San Antonio, San Antonio, USA

F53: Does Haptic Feedback Support Motor Learning with a Prosthesis? A Neurobehavioral Evaluation

<u>John Johnson</u>, Lewis Wheaton Georgia Inst. of Technology, Atlanta, USA

F54: Development of an Electromyographically-controlled Virtual Arm for Poststroke Motor Rehabilitation

<u>Mingjian Zhang</u>¹, Reza Rawassizadeh², Ehsan Hoque², Ania Busza¹ ¹Dept. of Neurology, Univ. of Rochester Medical Center, Strong Memorial Hospital, Rochester, USA. ²Dept. of Computer Science, Univ. of Rochester, Rochester, USA

F55: Assessment of Reflex and Nonreflex Components of Spasticity in Cerebral Palsy

Dali Xu¹, Yi-Ning Wu², Yupeng Ren³, Deborah Gaebler-Spira⁴, Fan Gao⁵, Mauricio Delgado⁶, <u>Li-Qun Zhang^{7,1}</u>

¹Univ. of Maryland Baltimore, Baltimore, USA. ²Univ. of Massachusetts Lowell, Lowell, USA. ³Rehabtek, Baltimore, USA. ⁴Rehabilitation Inst. of Chicago, Chicago, USA. ⁵Univ. of Kentucky, Lexington, USA. ⁶Texas Scottish Rite Hospital for Children, Dallas, USA. ⁷Northwestern Univ., Chicago, USA

F56: Effects of Gait Training on Spinal Excitability and Gait Biomechanics in Individuals Post-stroke

Jiang Xu, Steven Eicholtz, Justin Liu, Morgan Trees, Alejandro Lopez, Trisha Kesar Emory Univ., Atlanta, USA

Abstract titles are printed as submitted by the author. Full abstracts can be found at www.asnr.com

FACULTY DISCLOSURE STATEMENTS

Georgy Bakalkin, PhD - None Kelsey Baker, PhD - None Cathrin Buetefisch, MD, PhD, FASNR - None Laurel Buxbaum, PsyD - None Winston Byblow, PhD - None Jason Carmel, MD, PhD - None S. Thomas Carmichael, MD, PhD - Contracted Research: Takeda Pharmaceuticals Sunahee Cho, PhD - None John Cirillo - None Leonardo Cohen, MD, FASNR - None Steven Cramer, MD, MMSc - Consultant: MicroTransponder, Dart Neuroscience, Roche, Neurolutions, Regenera, and Abbvie Matthew Edwardson, MD - None Margaret French, PT, DPT, NCS - None Flavio Frohlich, PhD - Salary: Pulvinar Neuro Karunesh Ganguly, MD, PhD - Other: Pending patent on sensory electrical stimulation for stroke James Grau, PhD - None Mary Teena Joy, PhD - None Teresa Kimberley, PT, PhD - None Gert Kwakkel, PhD, PT - None Catherine Lang, PT, PhD - Royalty: AOTA Press Inc. Jin-Moo Lee, MD, PhD - None Albert Lo, MD - None Sangeetha Madhavan, PT, PhD - None John Martin, PhD - None David Reinkensmeyer, PhD - None W. Zev Rymer, PhD, MD - None Robert Sainburg, PhD - None Heidi Schambra, MD - None Jill Stewart, PT, PhD - None Keith Tansey, MD, PhD - None Lewis Wheaton, PhD - None Ian Winship, PhD - None Steven Wolf, PhD, PT, FASNR - Stock: Myo Ince. Salary: Enspire Steven Zeiler, MD, PhD - Contracted Research: Ever Pharma

EXHIBITORS

Sage

The Journal of Neurorehabilitation & Neural Repair (Booth 1)

Neurorehabilitation & Neural Repair offers neurologists, neurosurgeons, physiatrists, rehabilitation nurses, discharge planners, social workers, basic scientists working in neural regeneration and plasticity, and physical, occupational, and speech therapists innovative and reliable reports relevant to functional recovery from neural injury and long term neurologic care.

Meet the NNR Editor

Thursday, November 1, 2018, 10:30-12:30 Friday, November 2, 2018, 10:30-12:30

g.tec neurotechnolgy GmbH

(Booth 2)

g.tec developed the first commercially available BCI system in 1999. All hardware and software developments are done in-house and work with all major BCI approaches (motor imagery, P300, SSVEP and slow cortical potentials). g.tec's BCI technologies have been tested on more than 500 subjects to guarantee a perfect working system.

California Rehabilitation Institute

(Booth 3)

A partnership of Cedars-Sinai, UCLA Health and Select Medical, California Rehabilitation Institute provides patients with the latest acute inpatient rehabilitation care. With 138 private suites, we are the largest physical medicine and rehabilitation hospital of its kind on the West Coast providing excellence in clinical care, education and research.

The National Center of Neuromodulation for Rehabilitation

(Booth 4)

The National Center of Neuromodulation for Rehabilitation (NM4R) is an infrastructure resource center funded by NIH (NICHD/NCMRR) as part of the Medical Rehabilitation Research Resource (MR3) Network. The center has many opportunities for people interested in neuromodulation. Our home is the College of Health Professions and the College of Medicine at the Medical University of South Carolina (MUSC). Our primary goal is to develop and support a community of rehabilitation researchers who apply brain stimulation and operant conditioning approaches to both mechanistic and intervention studies to further develop the technology and theory for the field of rehabilitation. To accomplish our goals we host nocost registration entry level and advanced hands-on workshops. We also have investigators visit MUSC for a few days and longer to gain further training including the possibility of doing a sabbatical. To help jump start research in the NM4R we fund pilot grants each year. Finally, we strive to advance development of technology and the science of NM4R through our technology development component. Visit us at: http:// academicdepartments.musc.edu/ncnm4r/

TMSi

(Booth 5)

Whether you want to measure EEG, HD EMG, or other electrophysiological parameters of the human body, TMSi provides the optimal solution for your (medical) research. TMSi is specialized in electrophysiological measurement solutions (FDA 510k approved) and provides this to researchers all around the globe. Check out our latest development at www.tmsi.com/ saga.

APDM Wearable Technologies

(Booth 6)

APDM Wearable Technologies is a digital health company offering sensor-based solutions for quantifying human movement. Solutions support the translation of cutting-edge rehabilitation research into clinical practice. Motion Studio provides access to raw data, Mobility Lab generates gait and balance outcome measures, and Moveo Explorer produces joint angle data.

TMS

ANT North America

(Booth 7)

ANT Neuro offers products tailored to the needs of clinical neurophysiologists and neuroscientists. ANT's waveguard EEG caps lead the industry in comfort and ease of use, and are compatible with virtually any EEG system. Waveguard caps can be paired with ANT's eego EEG amplifier (8 - 256 channels) and xensor electrode position digitizer to form a complete system for routine and high density EEG acquisition.

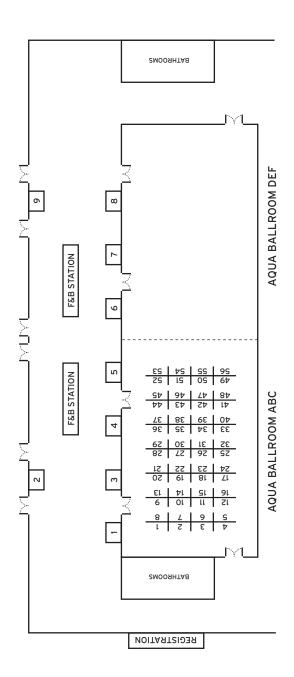
Bertec

(Booth 8)

Bertec[®] introduces a new wearable vibrotactile training system for postural balance and gait training. The Bertec[®] ArmSense includes both movement sensing and real-time vibrotactile feedback. It is portable for both clinic and homebased rehabilitation applications for patients with Parkinson's or other balance and gait impairments.

Camridge Electronic Design

(Booth 9)


* Friday only

CED have been producing data acquisition using the powerful 1401 family of laboratory interfaces for over 48 years. Specialist applications include intracellular & extracellular physiology, spike shape analysis, EEG, EMG, ECG, LTP, LTD, behavioural studies, evoked response, signal averaging, spectral analysis & single channel/whole cell patch clamp.

BERTEC

CALL FOR PAPERS

Neurorehabilitation & Neural Repair

Ranked #1 in **Rehabilitation (SCI)!**

Neurorehabilitation

journals.sagepub.com/home/nnr

Editor: Randolph J. Nudo University of Kansas Medical Center

Impact Factor: 4.711 Ranking: 1/65 in Rehabilitation (SCI) and 32/197 in Clinical Neurology (SCI) Source: Journal Citation Reports®, 2018 release, a Clarivate Analytics product

The Official Journal of the American Society of Neurorehabilitation

Published in Association with World Federation of NeuroRehabilitation

An International Journal of Translational Science for Researchers and Clinicians

Neurorehabilitation & Neural Repair (NNR) offers neurologists, neurosurgeons, physiatrists, rehabilitation nurses, discharge planners, social workers, basic scientists working in neural regeneration and plasticity, and physical, occupational, and speech therapists innovative and reliable reports relevant to functional recovery from neural injury and long term neurologic care. The journal's unique focus is evidence-based basic and clinical practice and research.

NNR deals with the management and fundamental mechanisms of functional recovery from conditions such as stroke, multiple sclerosis, cerebral palsy, Parkinson's disease and other movement disorders, Alzheimer's disease and dementia, traumatic and acquired brain injuries and related secondary conditions, spinal cord injuries, and peripheral nerve injuries.

Some of the key topics covered in recent issues include cortical remodeling after stroke, traumatic brain injury or spinal cord injury studied by transcranial magnetic stimulation and functional magnetic resonance imaging, mechanisms of sprouting and regeneration, development of cell lines for transplantation and trophic factor replacement strategies to promote functional recovery in human patients, multidisciplinary management of neurologic disease, bioengineering and assistive devices used in the management of neurologic impairment or pain syndromes, pharmacological management of multiple sclerosis, pharmacology of motor recovery, cognitive rehabilitation, and design of randomized multicenter trials in neurorehabilitation.

The journal carries articles designed to appeal to a variety of audiences: clinical practice, research, brief communications, case reports, reviews, and media reviews.

Submit your manuscript: http://mc.manuscriptcentral.com/nnr

WFNR

AMERICAN SO

N8J1460

MARK YOUR CALENDAR!