Phases of Stroke Recovery:
Cellular and Molecular Mechanisms

“My advice is to learn all the tricks you can while you’re young.”

S. Thomas Carmichael, M.D., Ph.D.
Professor, Vice Chair
Depts Neurology and Neurobiology
David Geffen School of Medicine at UCLA
Co-Director UCLA Broad Stem Cell Center
Two goals in neural repair in stroke:
• Increase the amount or duration of early plasticity
• Induce greater plasticity late in the disease
Defining the First Phase in Neural Repair: the Death to Repair Transition

1. Stroke triggers initial hypoxia, excitotoxicity, reperfusion injury and inflammation (in that order)

2. Recovery involves stimulating neuronal circuits, enhancing growth programs and demanding cellular energy

These two processes will exacerbate each other if they overlap
Blocking Tonic GABA Inhibition

Enhancing Glutamate Signaling (AMPAR signaling)

Figures:
- GABA_ARs subtypes: αβδ, α_{1,2,3}βγ, α₅βγ, αβε, αβ
- L655,708 treatment
- Graphs showing % foot faults relative to total steps taken

References:
- Clarkson et al. Nature 468:305
- J Neurosci 31:3766

Images:
- Presynaptic neuron diagram
- Glia cell and glutamate transporter
- Grid walking experiment
Defining the Second Phase in Neural Repair: Endogenous Plasticity to Chronic Stage

Inflection Point (Day 3 in mice)

Tissue sensitivity to excitatory activity

What ends the sensitive period or the Subacute period of substantial recovery?
Molecular Growth Programs in the Brain after Stroke

Axonal Sprouting: formation of new connections

Neurogenesis: formation of new neurons

Gliogenesis: formation of new astrocytes, OPCs, oligodendrocytes

Angiogenesis: formation of new blood vessels

Synaptic plasticity: changes in function of synaptic circuits without structural change in these circuits, changes in inhibitory control within these circuits

Common features:
- structural growth: growth cone, leading cellular edge, tip cell
- interactions with other cells that are responding to stroke: neuronal, astrocyte, OPC, vascular interactions

= Transient Regenerative Cellular Niches for Neural Repair after Stroke
One such transient regenerative cellular niche is the **regenerative neurovascular niche:**

- Angiogenic blood vessels signal to neural progenitor cells to causally mediate neurogenesis
- This niche may also have a role in axonal sprouting
- This niche times out

Concept: when these niches expire, it is part of the transition to the chronic, less plastic stroke state.
Wnt5a/FRZ2,7 signaling can prolong the regenerative neurovascular niche.
Molecular Closure of Sensitive Period in Subacute Phase after Stroke: Axonal Growth Program

#1. Just the molecular action is reduced in later phases of stroke

Axonal Sprouting Transcriptome

Gene regulation day 7 after stroke
- 804 up
- 542 down

Gene regulation day 21 after stroke
- 572 up
- 164 down

#2. However, the specific classes of genes that are induced during the sensitive period in stroke, and then decrease indicate loss of a coordinated growth state

Adhesion molecule
Axonal outgrowth and guidance
Calcium signaling, calcium homeostasis
Intracellular phosphorylation cascade
Cell surface receptor
Extracellular matrix
Growth factor
GTPase and G protein–coupled receptor
MCH1, immune system, complement
Ubiquitin and proteasome
Cytoskeleton, trafficking, migration
Transcription factor
Neuron-specific or related
Cytokine, chemokine
Epigenetic or DNA-modifying

Li et al. Nat Neurosci 13:1496
#3. Molecular Networks are activated in the sensitive period and then shut down after the sensitive period:

IGF-1 Signaling Network in Sprouting Neurons after Stroke

- Induced at day 7
- Linked to an entire molecular pathway from cell surface to intracellular trans factors
- Controls signaling network early in post-stroke recovery

Li et al. Nat Neurosci 13:1496
Molecular Closure of Sensitive Period in Subacute Phase after Stroke: Axonal Growth Program

#3. Molecular Networks are activated and then shut down after the sensitive period:

IGF-1 Signaling Network in Sprouting Neurons after Stroke

• Shut off by day 21
Molecular Control of the Sensitive Period/Subacute Period in Stroke Recovery

CREB transcription factor controls motor recovery after stroke-switching recovery on and off

- Lenti-CREB
- Lenti-tdTomato
- Microinjections into motor cortex adjacent to stroke
- Test of circuitry in motor recovery
CREB transduces activity signals after stroke to stimulate motor network plasticity and recovery.
CREB enables neurons to capture more network “territory”
This also occurs in normal motor performance
Stroke induces a state of “metaplasticity”.

Turning off CREB-Induced Motor Neurons during Recovery Process
Defining the Second Phase in Neural Repair: Endogenous Plasticity to Chronic Stage

- Inflection Point (Day 3 in mice)
- Provokes worsening Cell death
- Promotes improved Behavioral recovery

Phases:
- Acute
- Subacute
- Chronic
Stroke triggers a specific and highly detailed molecular growth program and induces regenerative cellular niches. These time out. Certain molecular signals can prolong them.

Can they be induced once again in the chronic state?
Paradigms for Extending the Sensitive Period in Stroke, or for Enhancing Endogenous Plasticity for Recovery into a Period in which We Learn Few New Tricks:
Approaches for an Old Dog

Enrich Training in Subacute period:
Recognizes limits for chronic stroke
But bumpy road for this approach.

Enhance practice in chronic period:
Activity drops off in chronic period.
Maybe boosting rehabilitative training will promote recovery.
But: LEAPS, iCARE

Adopt a New Paradigm:
Tissue repair times out only weeks after stroke
Molecular and cellular neurorehab to boost regeneration.
But therapeutics still in the pipeline, pharma and biotech frankly hysterical about any new stroke trials (even though not neuroprotection)