The Uninjured Hemisphere in Hemiplegia: Friend or Foe?

Jason Carmel, MD, PhD ASNR Annual Meeting October 15, 2015

Hemiparesis is the Most Common Pattern of Motor Impairment

- 795,000 strokes/year in US
- Est. current prevalence: 7,400,000
- Est. prevalence in 2030: 11,000,000
- Direct and indirect costs total \$34.3 billion/yr
- 40% of all cases of cerebral palsy; 2/1000

Go, Circulation, 2014

Knowing Role of Uninjured Hemisphere Will Change Therapy

- Friend: Some hand control in hemispherectomy
- Foe: "Inhibitory" brain stim or other interventions promote recovery

The Uninjured Hemisphere

Friend

• Winston Byblow, PhD

Professor of Neuroscience, Director, Movement Neuroscience Lab, Dept of Sport & Exercise Science and Centre for Brain Research, The University of Auckland

• Jason Carmel, MD, PhD

Assistant Professor, Neuroscience, Weill Cornell Medical College Director, Motor Recovery Lab, Burke Medical Research Institute

Foe

• Lara Boyd, PT, Ph

Professor and Canada Research Chair, Department of Physical Therapy, University of British Columbia

• Leonardo G. Cohen, MD

Chief, Human Cortical Physiology and Stroke Neurorehabilitation Section, National Institute of Neurological Disease and Stroke

Schedule

- 8:30 Intro of speakers and format
- 8:35 Perspective 1 present argument
- 9:05 Perspective 2 presents argument
- 9:35 Rebuttal from Perspective 1
- 9:45 Rebuttal from Perspective 2
- 9:55 Discussion and conclusion

Overview

- Role of ipsilateral hemisphere in health
- Uninjured hemisphere in hemiplegia recovery
- Promoting control from the uninjured side

Overview

- Role of ipsilateral hemisphere in health
- Uninjured hemisphere in hemiplegia recovery
- Promoting control from the uninjured side

The Corticospinal System

Recruitment of ipsilateral hemisphere with increased difficulty of task

Mvmt vs No Mvmt

Difficult > Easy

Winstein, J Neurophys, 1997

Stroke Impairs Ipsilateral Hand/Forelimb

Noskin, J Neurol Neurosurg Psychiatry, 2007

ype of injury	Reference
	Price & Fowler (1981) Montoya et al. (1991)
lia	Dunnett et al. (1988) Montoya et al. (1990) Miklyaeva et al. (1994) Olsson et al. (1995) Fricker et al. (1996) Whishaw et al. (1997) Dobrossy et al. (2000) Jeyasinghum et al. (2001)
	Grabowski et al. (1993) Marston et al. (1995) Sharkey et al. (1996) Cregan et al. (1997) Hutzik et al. (2000) Virley et al. (2000) Butovas et al. (2001) Moyanova et al. (2003) Henderson et al. (1999)
	Brodal (1973) Haaland & Delancy (1981) Fisk & Goodale (1988) Haaland & Harrington (1989) Jones et al. (1989) Dickstein et al. (1993) Titianova & Tarkka (1995) Winstein & Pohl (1995) Desrossiers et al. (1996) Baskett et al. (1996) Steenbergen et al. (1996) Yelnik et al. (1997) Carcy et al. (1997) Carcy et al. (1998) Hermsdorffr & Goldenberg (2002) Sunderland et al. (1999) Andrews & Bohannon (2000) Hermsdorffr & Goldenberg (2002) Sunderland (2001) Debarer et al. (2001) Hanna-Pladdy et al. (2002) Sugaman et al. (2002) Swimner et al. (2003)

Control of Ipsilateral Movement in Motor Cortex

- Mapping of ipsilateral movements in motor cortex
- How does it relate to contralateral motor map?
- How does map change after injury to opposite side?

Similar Contra & Ipsi Motor Maps

J. Neurosci, 2009

4-AP Restores Ipsi Responses After CST injury

J. Neurosci, 2009

Conclusions: Ipsilateral Control

- Activation with difficult tasks
- Worse ipsi hand function with injury
- In rats, ipsi map surprisingly robust
- Ipsi responses require other hemisphere – Interaction in the spinal cord

Overview

- Role of ipsilateral hemisphere in health
- Uninjured hemisphere in hemiplegia recovery
- Promoting control from the uninjured side

Injury and Recovery after CST Lesion in the Monkey

Nishimura, Science, 2007

Uninjured M1 Active in Early Recovery

Ipsilateral Motor Cortex Critical for Early Recovery

Nishimura, Science, 2007

Ipsilateral Control after Stroke Therapy in Rats

Wahl, Science, 2014

Bilateral Control From One Hemisphere

- 8 y o with left porencephaly
- Extensive physical training
- Independent finger movements

Left moves

Right moves

Weber, Neurocase, 2006

Connectivity in Peds Hemiplegia

Kathleen Friel, PhD

Conclusions: Hemiplegia Recovery

- Uninjured hemisphere critical for early recovery in monkey CST injury
- Ipsilateral CST mediates therapy-induced stroke recovery in rats
- Adaptive ipsilateral control in peds hemiplegia

Overview

- Role of ipsilateral hemisphere in health
- Uninjured hemisphere in hemiplegia recovery
- Promoting control from the uninjured side

Stimulating the uninjured hemisphere to restore limb control

- 10 days; 6 hrs/day; 333 Hz;
 0.2 ms pulses
- Threshold 1.1-1.8mA

J Neurosci, 2014

Stimulation after Chronic Injury

Stimulation after Chronic Injury

J Neurosci, 2014

Spinal Cord Axon Outgrowth

2.3x 4.6x

Eur J Neurosci, 2013

■

Conclusions: Stimulation Studies

- Gain in control from uninjured hemisphere
- Effective after chronic injury
- Accompanied by axon outgrowth

Uninjured Hemisphere: Friend

- Difficult tasks require both hemispheres
- Capacity for bilateral control
- Injury causes ipsilateral deficits
- Recovery mediated by uninjured motor cortex
- Validated target for repair

How to Fill the Gap

- Understand recovery network
 - Independent tests of descending and transcallosal circuits
 - Pathway specific activation (pairing)
 - Pathway specific inactivation

Acknowledgements

John H. Martin, PhD

<u>Current</u>

