WHAT PARIETAL APRAXIA REVEALS ABOUT THE BRAIN'S TWO ACTION SYSTEMS

LAUREL J. BUXBAUM COGNITION AND ACTION LABORATORY MOSS REHABILITATION RESEARCH INSTITUTE PHILADELPHIA, PA, USA

LIMB APRAXIA

- A cluster of deficits in skilled action not attributable to weakness or incoordination
- Occurs in ≈ 50% of left hemisphere stroke
- Deficits in pantomime of tool actions, imitation of meaningful and meaningless actions (bilaterally), and/or action recognition
- Historical and current confusion about terminology and characteristics (e.g., ideomotor vs. ideational).
- Obfuscation drives researchers away from studying the disorder.

Our approach (cognitive neuroscience):

1) Develop a componential cognitive neuroanatomical model of the brain regions subserving different aspects of action production and recognition.

2) Understand the computational mechanisms that underlie these components.

PART 1: WHICH BRAIN REGIONS ARE CRITICAL FOR WHICH *COMPONENTS* OF SKILLED ACTION?

(patient image removed)

Buxbaum, Shapiro, & Coslett, *Brain* 2014

tool-related action

Imitation

Regions critical for postural and kinematic components of imitation of toolrelated movements

Posture (tool-specific hand + arm shape/orientation/movement)

Scale and timing (adjusted on-line)

SUMMARY OF PART 1:

-posterior temporal lobe/temporo-parietal junction: tool-specific representations of body to tool postures and movements, possibly in a visuo-kinesthetic format (transformation from visual to kinesthetic representation

-supramarginal gyrus/S1/M1: positioning of body in space over time

-Relative damage to each of these regions gives flavor of "ideational" and "ideomotor" apraxia, and given many MCA strokes, explains why they often co-exist

Stored, tool-specific

on-line body positioning

PART TWO: THE BRAIN'S TWO CORTICAL ACTION SYSTEMS

Dorsal Stream: Reaching, grasping, and eye movements to visual targets Ventral Stream: Object recognition, Semantic knowledge

(Patient images removed)

Evidence for Segregation of Function: Optic Ataxia vs. Limb Apraxia

(patient image removed)

> 40% lesion overlap

> 60% lesion overlap

а

Impaired

Less Impaired

Object-related Pantomime...... Actual object use Memory-dependent actions Visually-guided actions Object-specific hand postures Prehension

Two Action Systems:

Move System = bilateral dorso-dorsal stream: action in response to current visual input Use System = left hemisphere ventral-dorsal stream: action understanding, skilled object use Gradient: current vision-based \rightarrow retrieval-based

Buxbaum & Kalenine, Ann. NY Acad Sci., 2012

TESTING THE MODEL

	Dorso-Dorsal (Move)	Dorso-Ventral (Use)
Coordinate frame (movements vis a vis the body or objects)	Objects	Body
Visual dependence	Stronger role of current visual guidance	Stroy of pr
Dependence on structural "affordances"	Affordance-driven	Me. ory-driv

And: partial segregation of function predicts COMPETITION

Coordinate frame and availability of visual feedback

Target

Body-relative Posture

Grasp

With Online Correction

Without Online Correction

Deficits in Body-Relative Coding and Abnormal Reliance on Visual Feedback (Jax, Buxbaum, & Moll, JOCN, 2006)

Object-relative

Body-relative

non-apraxic

apraxic

Requirement to imagine/predict movement

Motor control condition: Actual prehension of dowels and widgets presented in 6 orientations

Motor imagery condition: planned prehension (with no feedback from target objects)

(Both in non-mixed and mixed blocks)

Buxbaum, Johnson-Frey, & Bartlett-Williams, Neuropsychologia, 2005

Congruence of subjects' performance in grasp and imagery tasks

Dependence on structural "affordances"

Low-Afforded

High-Afforded

Barde, Buxbaum, & Moll, JINS, 2007

Affordance x Group Intxn - F(2,18) = 7.40, p = .005

Apraxia -Medium blue Benefit of Structure Information -Green Intersection - Light blue

Competition between Move and Use Actions

Move: faster, shorter-lasting Use: slower, longer-lasting

Jax & Buxbaum, Cognition, 2010.

The Neuroanatomic Substrates of Competition between Move and use Actions

Watson & Buxbaum, Cortex, 2015

Total pantomime scores

t

6.6

Disrupted connectivity between nodes in the Use System network (Resting Functional Connectivity)

Functional connectivity measures from patients:

- Can tell us how interactions between *intact* brain regions change after a lesion
- Help identify tissue behaving abnormally beyond areas obviously lesioned

(unpublished data removed from slide)

(unpublished theoretical model removed)

THANK YOU!

Cognition and Action Lab, Moss Rehabilitation Research Institute

Collaborators

Branch Coslett Steve Gotts Steve Jax Solene Kalenine John Krakauer Katherine Kuchenbecker Alex Martin Dan Mirman Ricarda Schubotz Myrna Schwartz Sharon Thompson-Schill Christine Watson Aaron Wong

Supported by NIH-NINDS and the James S. McDonnell Foundation

Anticipatory Force Control for Familiar Objects

Dawson, Buxbaum, & Duff, 2010 (and see Li Randerath, Goldenberg, Hermsdörfer, 2007).