

What do we know?

- Ipsilesional M1 excitability
 Is initially reduced
 Typically increases in patients who improve
 Contralesional M1 excitability
 Not different to healthy control subjects
 219/Headfield 2002 24/Clatano 1997
 Stable over time
 Interhemispheric inhibition
 Reduced from ipsilesional to contralesional M1
 10/Butefisch 2008
 Normal from contralesional to ipsilesional M1
 10/Butefisch 2008

- Increased from contralesional to ipsilesional M1, but...
 24/Takehi 2014

- During recovery,
 Ipsilesional M1 excitability increases / threshold decreases
 Recovery of Na/K pump and voltage-gated ion channel function
 Remyelination along CST
 Other?

 - Contralesional M1 excitability / threshold remains stable
 Transcallosal output is balanced and remains stable

Link between imbalance and recovery?

- UL impairment and ipsilesional RMT recover by 70% for patients with a viable CST
- Can the uninjured hemisphere be **targeted** (not suppressed) to promote further functional gains?