

Temporally Regulated GDNF Delivery Prevents Axon Trapping in Long Peripheral Nerve Injuries

Engineering

Laura Marquardt PhD¹, Xueping Ee MD², Nisha Iyer BS¹, Daniel Hunter RA², Susan Mackinnon MD², Matthew Wood PhD², and **Shelly Sakiyama-Elbert, PhD¹²**

¹Department of Biomedical Engineering, Washington University in St. Louis, ²Division of Plastic and Reconstructive Surgery, Washington University School of Medicine

> ASN R Chicago, IL October 15th, 2015

Washington University in Status Cobjectives Overall : Enhance axonal regeneration in a long nerver defect model through a temporal and spatial GDNF delivery platform Dual GDNF delivery platform: modified ANA with affinity-based GDNF release and transplanted GDNF expressing Schwann cells (SCs) Determine timing of controlled GDNF delivery through affinity-based delivery system and LV GDNF-SCs in 3 cm

rat sciatic nerve defect model

Washington University in St.Louis	Engineering
Surgical Procedure	
1. Expose nerve and isolate sural nerve to be sp	ared. Common peroneal nerve
Common Sciatic	(CPN)
2. Transect CPN and tibial nerve about 5 mm distal to the trifurcation.	
 Graft 3 cm reverse isograft or ANA to CPN and tibial nerve. SCs are transplanted distally in CPN and tibial nerve with a fibrin gel. 	
Marquardt, LM. Tissue Eng. 2015.	

🐺 Washington University in St. Louis

Summary

Engineering

- GDNF released from GDNF-SCs remains biologically active and promotes significant neurite extension of DRG neurons.
- In vivo metrics indicate an intermediate time point of 6 weeks induced GDNF expression and a GDNF modified ANA prevents the "candy store effect" and enhances axonal regeneration.
- Increased muscle mass of GA and TA observed in 6 wee GDNF overexpression similar to that of isografts

